Tusach.vn xin giới thiệu lời giải chi tiết bài 8 trang 26 sách bài tập Toán 12 Chân trời sáng tạo. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Cho (D) là hình phẳng giới hạn bởi đồ thị của hàm số (y = sqrt x ), trục hoành và đường thẳng (x = 4). Đường thẳng (x = aleft( {0 < a < 4} right)) chia (D) thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của (a).
Đề bài
Cho \(D\) là hình phẳng giới hạn bởi đồ thị của hàm số \(y = \sqrt x \), trục hoành và đường thẳng \(x = 4\). Đường thẳng \(x = a\left( {0 < a < 4} \right)\) chia \(D\) thành hai phần có diện tích bằng nhau (Hình 3). Tính giá trị của \(a\).

Phương pháp giải - Xem chi tiết
Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).
Lời giải chi tiết
Diện tích phần bên trái: \({S_1} = \int\limits_0^a {\left| {\sqrt x } \right|dx} = \int\limits_0^a {{x^{\frac{1}{2}}}dx} = \left. {\frac{2}{3}{x^{\frac{3}{2}}}} \right|_0^a = \frac{2}{3}{a^{\frac{3}{2}}}\).
Diện tích hình phẳng \(D\): \({S_D} = \int\limits_0^4 {\left| {\sqrt x } \right|dx} = \int\limits_0^4 {{x^{\frac{1}{2}}}dx} = \left. {\frac{2}{3}{x^{\frac{3}{2}}}} \right|_0^4 = \frac{{16}}{3}\).
Đường thẳng \(x = a\left( {0 < a < 4} \right)\) chia \(D\) thành hai phần có diện tích bằng nhau nên ta có:
\({S_1} = \frac{1}{2}{S_D} \Leftrightarrow \frac{2}{3}{a^{\frac{3}{2}}} = \frac{1}{2}.\frac{{16}}{3} \Leftrightarrow {a^{\frac{3}{2}}} = 4 \Leftrightarrow {a^3} = 16 \Leftrightarrow a = 2\sqrt[3]{2}\).
Bài 8 trang 26 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các kiến thức về đạo hàm của hàm số, đạo hàm của tổng, hiệu, tích, thương của các hàm số, và quy tắc đạo hàm của hàm hợp để giải quyết các bài toán cụ thể.
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 8 trang 26 SBT Toán 12 Chân trời sáng tạo:
Đề bài: Tính đạo hàm của hàm số y = sin(2x + 1).
Lời giải:
Đặt u = 2x + 1. Khi đó, y = sin(u).
Ta có: du/dx = 2 và dy/du = cos(u).
Áp dụng quy tắc đạo hàm của hàm hợp, ta có: dy/dx = (dy/du) * (du/dx) = cos(u) * 2 = 2cos(2x + 1).
Đề bài: Tính đạo hàm của hàm số y = cos(x^2).
Lời giải:
Đặt u = x^2. Khi đó, y = cos(u).
Ta có: du/dx = 2x và dy/du = -sin(u).
Áp dụng quy tắc đạo hàm của hàm hợp, ta có: dy/dx = (dy/du) * (du/dx) = -sin(u) * 2x = -2xsin(x^2).
Đề bài: Tính đạo hàm của hàm số y = tan(3x).
Lời giải:
Ta có: dy/dx = (sec^2(3x)) * 3 = 3sec^2(3x).
Để nắm vững kiến thức về đạo hàm, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập và các tài liệu tham khảo khác. Tusach.vn cung cấp đầy đủ các lời giải bài tập Toán 12, giúp bạn tự học hiệu quả.
Bài 8 trang 26 SBT Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh củng cố kiến thức về đạo hàm. Việc nắm vững phương pháp giải và luyện tập thường xuyên sẽ giúp bạn tự tin giải quyết các bài toán tương tự trong các kỳ thi.
Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập