Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác nhất cho bài tập 5 trang 87 sách bài tập Toán 12 Chân trời sáng tạo. Chúng tôi hiểu rằng việc giải toán đôi khi có thể gặp khó khăn, vì vậy chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất.
Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết bài tập này một cách hiệu quả.
Hai máy X và Y cùng sản xuất một sản phẩm. Tỉ lệ sản phẩm đạt chuẩn của máy X và máy Y lần lượt là 95% và 90%. Một hộp chứa 1 sản phẩm do máy X sản xuất và 9 sản phẩm do máy Y sản xuất. Chọn ngẫu nhiên 2 sản phẩm từ hộp. a) Tính xác suất cả 2 sản phẩm được chọn đều đạt chuẩn. b) Biết rằng cả 2 sản phẩm lấy ra đều đạt chuẩn, tính xác suất chúng do máy Y sản xuất.
Đề bài
Hai máy X và Y cùng sản xuất một sản phẩm. Tỉ lệ sản phẩm đạt chuẩn của máy X và máy Y lần lượt là 95% và 90%. Một hộp chứa 1 sản phẩm do máy X sản xuất và 9 sản phẩm do máy Y sản xuất. Chọn ngẫu nhiên 2 sản phẩm từ hộp.
a) Tính xác suất cả 2 sản phẩm được chọn đều đạt chuẩn.
b) Biết rằng cả 2 sản phẩm lấy ra đều đạt chuẩn, tính xác suất chúng do máy Y sản xuất.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính xác suất toàn phần: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
‒ Sử dụng công thức Bayes: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Lời giải chi tiết
a) Gọi \(A\) là biến cố “Cả 2 sản phẩm lấy ra đều đạt chuẩn” và \(B\) là biến cố “Cả 2 sản phẩm đều do máy Y sản xuất”.
Vì trong hộp có chứa 1 sản phẩm do máy X sản xuất và 9 sản phẩm do máy Y sản xuất nên xác suất cả 2 sản phẩm đều do máy Y sản xuất là: \(P\left( B \right) = \frac{{{C}_9^2}}{{{C}_{10}^2}} = 0,8\).
Do đó \(P\left( {\overline B } \right) = 1 - 0,8 = 0,2\).
Tỉ lệ sản phẩm đạt chuẩn của máy X là 95% và máy Y lần lượt và 90% nên ta có \(P\left( {A|B} \right) = 0,9.0,9 = 0,81\) và \(P\left( {A|\overline B } \right) = 0,9.0,95 = 0,855\).
Theo công thức xác suất toàn phần, xác suất cả hai sản phẩm được chọn đều đạt chuẩn là:
\(P\left( A \right) = P\left( B \right)P\left( {A|B} \right) + P\left( B \right)P\left( {A|\overline B } \right) = 0,8.0,81 + 0,2.0,855 = 0,819\).
b) Theo công thức Bayes, xác suất cả 2 sản phẩm đều do máy Y sản xuất, biết rằng cả 2 sản phẩm lấy ra đều đạt chuẩn là:
\(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{0,8.0,81}}{{0,819}} = \frac{{72}}{{91}} \approx 0,791\).
Bài 5 trang 87 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào chủ đề về Đạo hàm của hàm số hợp. Đây là một phần kiến thức quan trọng, nền tảng cho việc giải quyết các bài toán phức tạp hơn trong chương trình học và các kỳ thi quan trọng như THPT Quốc gia.
Bài tập 5 trang 87 yêu cầu học sinh vận dụng các quy tắc tính đạo hàm của hàm số hợp, bao gồm:
Để giúp các bạn học sinh hiểu rõ hơn, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi trong bài tập 5 trang 87:
Đề bài: Tính đạo hàm của hàm số y = sin(x2 + 1)
Lời giải:
Đề bài: Tính đạo hàm của hàm số y = ecos(x)
Lời giải:
Để giải các bài tập về đạo hàm hàm số hợp một cách nhanh chóng và chính xác, bạn nên:
Để củng cố kiến thức, bạn có thể thử giải các bài tập tương tự sau:
Hy vọng với lời giải chi tiết và hướng dẫn cụ thể trên, các bạn học sinh đã nắm vững cách giải bài 5 trang 87 sách bài tập Toán 12 Chân trời sáng tạo. Đừng ngần ngại liên hệ với tusach.vn nếu bạn có bất kỳ câu hỏi nào. Chúc các bạn học tập tốt!
| Hàm số | Đạo hàm |
|---|---|
| y = sin(x2 + 1) | y' = 2xcos(x2 + 1) |
| y = ecos(x) | y' = -sin(x)ecos(x) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập