Chào mừng bạn đến với lời giải chi tiết bài 8 trang 62 sách bài tập Toán 12 Chân trời sáng tạo trên tusach.vn. Bài viết này sẽ cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải chi tiết, giúp bạn nắm vững kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những tài liệu học tập chất lượng cao, hỗ trợ tối đa cho quá trình học tập của bạn.
Phương trình nào dưới đây là phương trình của đường thẳng đi qua (Aleft( {2;3;0} right)) và vuông góc với mặt phẳng (left( P right):x + 3y - z + 5 = 0)? A. (left{ begin{array}{l}x = 1 + t\y = 1 + 3t\z = 1 - tend{array} right.). B. (left{ begin{array}{l}x = 1 + t\y = 3t\z = 1 - tend{array} right.). C. (left{ begin{array}{l}x = 1 + 3t\y = 1 + 3t\z = 1 - tend{array} right.). D. (left{ begin{array}{l}x = 1 + 3t\y = 1 + 3t\z = 1 + tend{array} right.).
Đề bài
Phương trình nào dưới đây là phương trình của đường thẳng đi qua \(A\left( {2;3;0} \right)\) và vuông góc với mặt phẳng \(\left( P \right):x + 3y - z + 5 = 0\)?
A. \(\left\{ \begin{array}{l}x = 1 + t\\y = 1 + 3t\\z = 1 - t\end{array} \right.\).
B. \(\left\{ \begin{array}{l}x = 1 + t\\y = 3t\\z = 1 - t\end{array} \right.\).
C. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = 1 + 3t\\z = 1 - t\end{array} \right.\).
D. \(\left\{ \begin{array}{l}x = 1 + 3t\\y = 1 + 3t\\z = 1 + t\end{array} \right.\).
Phương pháp giải - Xem chi tiết
Phương trình tham số của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\left\{ \begin{array}{l}x = {x_0} + at\\y = {y_0} + bt\\z = {z_0} + ct\end{array} \right.\).
Lời giải chi tiết
Mặt phẳng \(\left( P \right):x + 3y - z + 5 = 0\) có vectơ pháp tuyến \(\overrightarrow n = \left( {1;3; - 1} \right)\).
Do đó, \(\overrightarrow n = \left( {1;3; - 1} \right)\) là vectơ chỉ phương của đường thẳng vuông góc với mặt phẳng \(\left( P \right)\).
Phương trình đường thẳng \(d\) đi qua \(A\left( {2;3;0} \right)\) vuông góc với mặt phẳng \(\left( P \right)\) là: \(\left\{ \begin{array}{l}x = 2 + t\\y = 3 + 3t\\z = - t\end{array} \right.\).
Cho \(t = - 1\) ta có đường thẳng \(d\) đi qua \(B\left( {1;0;1} \right)\). Vậy phương trình đường thẳng \(d\) là: \(\left\{ \begin{array}{l}x = 1 + t\\y = 3t\\z = 1 - t\end{array} \right.\).
Chọn B.
Bài 8 trang 62 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của hàm hợp và đạo hàm của hàm lượng giác. Việc nắm vững các công thức đạo hàm cơ bản và kỹ năng biến đổi đại số là yếu tố then chốt để giải quyết bài tập này một cách hiệu quả.
Bài 8 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 8 trang 62 sách bài tập Toán 12 Chân trời sáng tạo:
Lời giải:
Sử dụng quy tắc đạo hàm của hàm hợp, ta có:
y' = cos(2x + 1) * (2x + 1)' = 2cos(2x + 1)
Lời giải:
Sử dụng quy tắc đạo hàm của hàm hợp và đạo hàm của hàm lượng giác, ta có:
y' = 2tan(x) * (tan(x))' = 2tan(x) * (1/cos2(x)) = 2tan(x)/cos2(x)
Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:
Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 12:
Hy vọng với lời giải chi tiết và những hướng dẫn trên, bạn đã có thể tự tin giải bài 8 trang 62 sách bài tập Toán 12 Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập