Tusach.vn xin giới thiệu lời giải chi tiết bài 2 trang 14 SBT Toán 12 Chân trời sáng tạo. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải SBT Toán 12 Chân trời sáng tạo, đáp ứng nhu cầu học tập của học sinh.
Tính các tích phân sau: a) (intlimits_1^2 {frac{{1 - 2{rm{x}}}}{{{x^2}}}dx} ); b) (intlimits_1^2 {{{left( {sqrt x + frac{1}{{sqrt x }}} right)}^2}dx} ); c) (intlimits_1^4 {frac{{x - 4}}{{sqrt x + 2}}dx} ).
Đề bài
Tính các tích phân sau:
a) \(\int\limits_1^2 {\frac{{1 - 2{\rm{x}}}}{{{x^2}}}dx} \);
b) \(\int\limits_1^2 {{{\left( {\sqrt x + \frac{1}{{\sqrt x }}} \right)}^2}dx} \);
c) \(\int\limits_1^4 {\frac{{x - 4}}{{\sqrt x + 2}}dx} \).
Phương pháp giải - Xem chi tiết
Sử dụng các công thức:
• \(\int {{x^\alpha }dx} = \frac{{{x^{\alpha + 1}}}}{{\alpha + 1}} + C\).
• \(\int {\frac{1}{x}dx} = \ln \left| x \right| + C\).
Lời giải chi tiết
a) \(\int\limits_1^2 {\frac{{1 - 2{\rm{x}}}}{{{x^2}}}dx} = \int\limits_1^2 {\left( {{x^{ - 2}} - 2.\frac{1}{x}} \right)dx} = \left. {\left( { - \frac{1}{x} - 2\ln \left| x \right|} \right)} \right|_1^2 = \left( { - \frac{1}{2} - 2\ln 2} \right) - \left( { - \frac{1}{1} - 2\ln 1} \right) = \frac{1}{2} - 2\ln 2\).
b)
\(\begin{array}{l}\int\limits_1^2 {{{\left( {\sqrt x + \frac{1}{{\sqrt x }}} \right)}^2}dx} = \int\limits_1^2 {\left( {x + 2 + \frac{1}{x}} \right)dx} = \left. {\left( {\frac{{{x^2}}}{2} + 2x + \ln \left| x \right|} \right)} \right|_1^2\\ = \left( {\frac{{{2^2}}}{2} + 2.2 + \ln 2} \right) - \left( {\frac{{{1^2}}}{2} + 2.1 + \ln 1} \right) = \frac{7}{2} + \ln 2\end{array}\)
c)
\(\begin{array}{l}\int\limits_1^4 {\frac{{x - 4}}{{\sqrt x + 2}}dx} = \int\limits_1^4 {\frac{{\left( {\sqrt x + 2} \right)\left( {\sqrt x - 2} \right)}}{{\sqrt x + 2}}dx} = \int\limits_1^4 {\left( {\sqrt x - 2} \right)dx} = \int\limits_1^4 {\left( {{x^{\frac{1}{2}}} - 2} \right)dx} \\ = \left. {\left( {\frac{2}{3}{x^{\frac{3}{2}}} - 2x} \right)} \right|_1^4 = \left( {\frac{2}{3}{{.4}^{\frac{3}{2}}} - 2.4} \right) - \left( {\frac{2}{3}{{.1}^{\frac{3}{2}}} - 2.1} \right) = - \frac{4}{3}\end{array}\)
Bài 2 trang 14 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về giới hạn của hàm số. Đây là một phần quan trọng trong chương trình, giúp học sinh chuẩn bị cho kỳ thi THPT Quốc gia. Bài tập này thường yêu cầu học sinh vận dụng các định nghĩa, tính chất của giới hạn để giải quyết các bài toán cụ thể.
Bài 2 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng phần của bài 2 trang 14 SBT Toán 12 Chân trời sáng tạo:
Lời giải:
Vậy, lim_{x->2} (x^2 - 4)/(x - 2) = 4
Lời giải:
Chia cả tử và mẫu cho x, ta được:
lim_{x->∞} (2 + 1/x)/(1 - 3/x)
Khi x -> ∞, thì 1/x -> 0 và 3/x -> 0. Do đó:
lim_{x->∞} (2 + 1/x)/(1 - 3/x) = 2/1 = 2
Vậy, lim_{x->∞} (2x + 1)/(x - 3) = 2
Tusach.vn là địa chỉ tin cậy cung cấp lời giải chi tiết, chính xác và dễ hiểu cho các bài tập Toán 12, đặc biệt là sách bài tập Chân trời sáng tạo. Chúng tôi cam kết mang đến cho học sinh những trải nghiệm học tập tốt nhất, giúp các em tự tin chinh phục môn Toán.
Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập