1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 11 trang 35 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 11 trang 35 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 11 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài 11 trang 35, từ đó nâng cao khả năng giải toán của mình.

Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, kèm theo các lưu ý quan trọng để bạn có thể tự tin làm bài tập.

Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Cho hàm số (y = 2{x^3} - 5{x^2} - 24x - 18). a) Hàm số có hai cực trị. b) Hàm số đạt cực đại tại (x = - frac{4}{3}), giá trị cực đại là (frac{{10}}{{27}}). c) Hàm số đồng biến trong khoảng (left( {3; + infty } right)). d) Hàm số đồng biển trong khoảng (left( { - frac{4}{3};3} right)).

Đề bài

Chọn đúng hoặc sai cho mỗi ý a, b, c, d.Cho hàm số \(y = 2{x^3} - 5{x^2} - 24x - 18\). a) Hàm số có hai cực trị. b) Hàm số đạt cực đại tại \(x = - \frac{4}{3}\), giá trị cực đại là \(\frac{{10}}{{27}}\).c) Hàm số đồng biến trong khoảng \(\left( {3; + \infty } \right)\). d) Hàm số đồng biển trong khoảng \(\left( { - \frac{4}{3};3} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 11 trang 35 sách bài tập toán 12 - Chân trời sáng tạo 1

Các bước để xét tính đơn điệu và tìm cực trị của hàm số \(f\left( x \right)\):

Bước 1. Tìm tập xác định \(D\) của hàm số.

Bước 2. Tính đạo hàm \(f'\left( x \right)\) của hàm số. Tìm các điểm \({x_1},{x_2},...,{x_n} \in D\) mà tại đó đạo hàm \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.

Bước 3. Sắp xếp các điểm \({x_1},{x_2},...,{x_n}\) theo thứ tự tăng dần, xét dấu \(f'\left( x \right)\) và lập bảng biến thiên.

Bước 4. Nêu kết luận về các khoảng đồng biến, nghịch biến, cực trị của hàm số.

Lời giải chi tiết

Xét hàm số \(y = 2{x^3} - 5{x^2} - 24x - 18\).

Tập xác định: \(D = \mathbb{R}\).

Ta có \(y' = 6{x^2} - 10x - 24;y' = 0 \Leftrightarrow x = 3\) hoặc \({\rm{x}} = - \frac{4}{3}\).

Bảng biến thiên:

Giải bài 11 trang 35 sách bài tập toán 12 - Chân trời sáng tạo 2

Hàm số đồng biến trên các khoảng \(\left( { - \infty ; - \frac{4}{3}} \right)\) và \(\left( {3; + \infty } \right)\), nghịch biến trên khoảng \(\left( { - \frac{4}{3};3} \right)\).

Hàm số đạt cực đại tại $x=-\frac{4}{3},{{y}_{CĐ}}=\frac{10}{27}$; hàm số đạt cực tiểu tại \(x = 3,{y_{CT}} = - 81\).

a) Đ.

b) Đ.

c) Đ.

d) S.

Giải bài 11 trang 35 Sách bài tập Toán 12 - Chân trời sáng tạo: Tổng quan và Phương pháp

Bài 11 trang 35 Sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết bài toán một cách hiệu quả.

Nội dung chi tiết bài 11 trang 35

Bài 11 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số đơn giản: Yêu cầu tính đạo hàm của các hàm số đa thức, phân thức, hoặc hàm số lượng giác cơ bản.
  • Dạng 2: Tính đạo hàm của hàm số phức tạp: Yêu cầu tính đạo hàm của hàm số được xây dựng từ các hàm số đơn giản bằng các phép toán cộng, trừ, nhân, chia và hàm hợp.
  • Dạng 3: Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của một hàm số, tức là đạo hàm của đạo hàm cấp nhất.

Lời giải chi tiết bài 11 trang 35 (Ví dụ)

Bài 11.1: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1.

Lời giải:

Áp dụng quy tắc đạo hàm của tổng và đạo hàm của hàm số lũy thừa, ta có:

f'(x) = d/dx (3x2) + d/dx (2x) - d/dx (1)

f'(x) = 3 * 2x + 2 - 0

f'(x) = 6x + 2

Các lưu ý quan trọng khi giải bài tập về đạo hàm

  1. Nắm vững các quy tắc tính đạo hàm: Đây là yếu tố then chốt để giải quyết mọi bài toán về đạo hàm.
  2. Phân tích cấu trúc hàm số: Xác định hàm số được xây dựng từ các hàm số đơn giản bằng phép toán nào để áp dụng quy tắc phù hợp.
  3. Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả bằng cách đạo hàm ngược hoặc thay các giá trị cụ thể của x vào hàm số và đạo hàm của nó.
  4. Sử dụng công cụ hỗ trợ: Các công cụ tính đạo hàm trực tuyến có thể giúp bạn kiểm tra kết quả và hiểu rõ hơn về quy trình tính đạo hàm.

Tusach.vn – Hỗ trợ học tập Toán 12 hiệu quả

Tusach.vn cam kết cung cấp lời giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 12 Chân trời sáng tạo. Chúng tôi hy vọng rằng với sự hỗ trợ của tusach.vn, bạn sẽ học tập môn Toán 12 một cách hiệu quả và đạt kết quả cao.

Bảng tổng hợp các công thức đạo hàm thường dùng

Hàm số y = f(x)Đạo hàm y' = f'(x)
C (hằng số)0
xnnxn-1
sin xcos x
cos x-sin x
(Bảng chỉ mang tính chất tham khảo)

Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán 12!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN