Tusach.vn xin giới thiệu lời giải chi tiết bài 7 trang 87 SBT Toán 12 Chân trời sáng tạo. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Hộp thứ nhất chứa 5 viên bi xanh và 1 viên bi đỏ. Hộp thứ hai chứa 4 viên bi đỏ. Chọn ngẫu nhiên 3 viên bi từ hộp thứ nhất và bỏ vào hộp thứ hai, rồi từ hộp thứ hai chọn ra ngẫu nhiên 2 viên bi. a) Tính xác suất của biến cố 2 viên bi lấy ra ở hộp thứ hai có cùng màu. b) Biết 2 viên bi lấy ra ở hộp thứ hai có cùng màu, tính xác suất 3 viên bị lấy ra từ hộp thứ nhất cũng có cùng màu.
Đề bài
Hộp thứ nhất chứa 5 viên bi xanh và 1 viên bi đỏ. Hộp thứ hai chứa 4 viên bi đỏ. Chọn ngẫu nhiên 3 viên bi từ hộp thứ nhất và bỏ vào hộp thứ hai, rồi từ hộp thứ hai chọn ra ngẫu nhiên 2 viên bi.
a) Tính xác suất của biến cố 2 viên bi lấy ra ở hộp thứ hai có cùng màu.
b) Biết 2 viên bi lấy ra ở hộp thứ hai có cùng màu, tính xác suất 3 viên bị lấy ra từ hộp thứ nhất cũng có cùng màu.
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính xác suất toàn phần: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
‒ Sử dụng công thức Bayes: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Lời giải chi tiết
Gọi \(A\) là biến cố “2 viên bi ở hộp thứ hai lấy ra có cùng màu” và \(B\) là biến cố “3 viên bi lấy ra từ hộp thứ nhất có cùng màu”.
• TH1: Chọn từ hộp thứ nhất 3 viên bi xanh
Hộp thứ nhất chứa 5 viên bi xanh và 1 viên bi đỏ nên xác suất để 3 viên bi lấy ra từ hộp thứ nhất có cùng màu là: \(P\left( B \right) = \frac{{{C}_5^3}}{{{C}_6^3}} = \frac{1}{2}\).
Khi đó hộp thứ hai có 3 viên bi xanh và 4 viên bi đỏ.
Xác suất để chọn ra 2 viên bi xanh từ hộp thứ hai là: \(\frac{{{C}_3^2}}{{{C}_7^2}} = \frac{1}{7}\).
Xác suất để chọn ra 2 viên bi đỏ từ hộp thứ hai là: \(\frac{{{C}_4^2}}{{{C}_7^2}} = \frac{2}{7}\).
Vậy xác xuất để 2 viên bi ở hộp thứ hai lấy ra có cùng màu biết rằng lấy ra từ hộp thứ nhất 3 viên bi xanh là: \(P\left( {A|B} \right) = \frac{1}{7} + \frac{2}{7} = \frac{3}{7}\).
• TH2: Chọn từ hộp thứ nhất 2 viên bi xanh và 1 viên bi đỏ.
Hộp thứ nhất chứa 5 viên bi xanh và 1 viên bi đỏ nên xác suất để lấy ra từ hộp thứ nhất 2 viên bi xanh và 1 viên bi đỏ là: \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 1 - \frac{1}{2} = \frac{1}{2}\).
Khi đó hộp thứ hai có 2 viên bi xanh và 5 viên bi đỏ.
Xác suất để chọn ra 2 viên bi xanh từ hộp thứ hai là: \(\frac{{{C}_2^2}}{{{C}_7^2}} = \frac{1}{{21}}\).
Xác suất để chọn ra 2 viên bi đỏ từ hộp thứ hai là: \(\frac{{{C}_5^2}}{{{C}_7^2}} = \frac{{10}}{{21}}\).
Vậy xác xuất để 2 viên bi ở hộp thứ hai lấy ra có cùng màu biết rằng lấy ra từ hộp thứ nhất 2 viên bi xanh và 1 viên bi đỏ là: \(P\left( {A|\overline B } \right) = \frac{1}{{21}} + \frac{{10}}{{21}} = \frac{{11}}{{21}}\).
Theo công thức xác suất toàn phần, xác suất 2 viên bi ở hộp thứ hai lấy ra có cùng màu là:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{1}{2}.\frac{3}{7} + \frac{1}{2}.\frac{{11}}{{21}} = \frac{{10}}{{21}} \approx 0,476\).
b) Theo công thức Bayes, xác suất 3 viên bi lấy ra ở hộp thứ nhất có cùng màu, biết rằng 2 viên bi lấy ra ở hộp thứ hai có cùng màu là:
\(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{2}.\frac{3}{7}}}{{\frac{{10}}{{21}}}} = 0,45\).
Bài 7 trang 87 Sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các công thức đạo hàm cơ bản, quy tắc tính đạo hàm của hàm số hợp, và đạo hàm của hàm số lượng giác để giải quyết các bài toán cụ thể.
Bài 7 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng câu hỏi trong bài 7 trang 87 SBT Toán 12 Chân trời sáng tạo:
Đề bài: Tính đạo hàm của hàm số f(x) = 3x2 + 2x - 1
Lời giải:
f'(x) = 6x + 2
Đề bài: Tính đạo hàm của hàm số g(x) = sin(2x)
Lời giải:
g'(x) = 2cos(2x)
Đề bài: Tìm đạo hàm cấp hai của hàm số h(x) = x3 - 4x + 5
Lời giải:
h'(x) = 3x2 - 4
h''(x) = 6x
Tusach.vn là một website học tập trực tuyến uy tín, cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm:
Với đội ngũ giáo viên giàu kinh nghiệm và phương pháp giảng dạy hiện đại, Tusach.vn cam kết giúp học sinh học Toán 12 hiệu quả và đạt kết quả cao.
Hy vọng với lời giải chi tiết và những lời khuyên hữu ích trên đây, các bạn học sinh sẽ tự tin hơn khi giải bài 7 trang 87 Sách bài tập Toán 12 Chân trời sáng tạo. Chúc các bạn học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập