1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2 trang 17 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 17 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 17 SBT Toán 12 Chân trời sáng tạo

Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải bài tập một cách dễ hiểu, giúp các em nắm vững kiến thức và tự tin hơn trong quá trình học tập.

Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục môn Toán.

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau: a) \(y = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\); b) \(y = - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\); c) \(y = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\); d) \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\); e) \(y = - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).

Đề bài

Tìm giá trị lớn nhất, giá trị nhỏ nhất của các hàm số sau:

a) \(y = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\);

b) \(y = - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\);

c) \(y = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\);

d) \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\);

e) \(y = - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 17 sách bài tập toán 12 - Chân trời sáng tạo 1

• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số \(f\left( x \right)\) trên đoạn \(\left[ {a;b} \right]\):

Bước 1. Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.

Bước 2. Tính \(f\left( a \right);f\left( {{x_1}} \right);f\left( {{x_2}} \right);...;f\left( {{x_n}} \right);f\left( b \right)\).

Bước 3. Gọi \(M\) là số lớn nhất và \(m\) là số nhỏ nhất trong các giá trị tìm được ở Bước 2. Khi đó: \(M = \mathop {\max }\limits_{\left[ {a;b} \right]} f\left( x \right),m = \mathop {\min }\limits_{\left[ {a;b} \right]} f\left( x \right)\).

• Cách tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng hay nửa khoảng bằng đạo hàm:

‒ Lập bảng biến thiên của hàm số trên tập hợp đó.

‒ Căn cứ vào bảng biến thiên, kết luận giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số.

Lời giải chi tiết

a) Xét hàm số \(y = f\left( x \right) = {x^3} - 8{x^2} - 12x + 1\) trên đoạn \(\left[ { - 2;9} \right]\).

Ta có: \(f'\left( x \right) = 3{{\rm{x}}^2} - 16{\rm{x}} - 12\)

\(f'\left( x \right) = 0 \Leftrightarrow x = 6\) hoặc \(x = - \frac{2}{3}\).

\(f\left( { - 2} \right) = - 15;f\left( { - \frac{2}{3}} \right) = \frac{{139}}{{27}};f\left( 6 \right) = - 143;f\left( 9 \right) = - 26\)

Vậy \(\mathop {\max }\limits_{\left[ { - 2;9} \right]} f\left( x \right) = f\left( { - \frac{2}{3}} \right) = \frac{{139}}{{27}},\mathop {\min }\limits_{\left[ { - 2;9} \right]} f\left( x \right) = f\left( 6 \right) = - 143\).

b) Xét hàm số \(y = f\left( x \right) = - 2{x^3} + 9{x^2} - 17\) trên nửa khoảng \(\left( { - \infty ;4} \right]\).

Ta có: \(f'\left( x \right) = - 6{{\rm{x}}^2} + 18{\rm{x}}\)

\(f'\left( x \right) = 0 \Leftrightarrow x = 0\) hoặc \(x = 3\).

Bảng biến thiên của hàm số trên nửa khoảng \(\left( { - \infty ;4} \right]\):

Giải bài 2 trang 17 sách bài tập toán 12 - Chân trời sáng tạo 2

Từ bảng biến thiên, ta thấy \(\mathop {\min }\limits_{\left( { - \infty ;4} \right]} f\left( x \right) = f\left( 0 \right) = - 17\), hàm số không có giá trị lớn nhất trên nửa khoảng \(\left( { - \infty ;4} \right]\).

c) Xét hàm số \(y = f\left( x \right) = {x^3} - 12x + 4\) trên đoạn \(\left[ { - 6;3} \right]\).

Ta có: \(f'\left( x \right) = 3{{\rm{x}}^2} - 12\)

\(f'\left( x \right) = 0 \Leftrightarrow x = 2\) hoặc \(x = - 2\).

\(f\left( { - 6} \right) = - 140;f\left( { - 2} \right) = 20;f\left( 2 \right) = - 12;f\left( 3 \right) = - 5\)

Vậy \(\mathop {\max }\limits_{\left[ { - 6;3} \right]} f\left( x \right) = f\left( { - 2} \right) = 20,\mathop {\min }\limits_{\left[ { - 6;3} \right]} f\left( x \right) = f\left( { - 6} \right) = - 140\).

d) Xét hàm số \(y = 2{x^3} - {x^2} - 28x - 3\) trên đoạn \(\left[ { - 2;1} \right]\).

Ta có: \(f'\left( x \right) = 6{{\rm{x}}^2} - 2{\rm{x}} - 28\)

\(f'\left( x \right) = 0 \Leftrightarrow x = \frac{7}{3}\) (loại) hoặc \(x = - 2\).

\(f\left( { - 2} \right) = 33;f\left( 1 \right) = - 30\)

Vậy \(\mathop {\max }\limits_{\left[ { - 2;1} \right]} f\left( x \right) = f\left( { - 2} \right) = 33,\mathop {\min }\limits_{\left[ { - 2;1} \right]} f\left( x \right) = f\left( 1 \right) = - 30\).

e) Xét hàm số \(y = f\left( x \right) = - 3{x^3} + 4{x^2} - 5x - 17\) trên đoạn \(\left[ { - 1;2} \right]\).

Ta có: \(f'\left( x \right) = - 9{{\rm{x}}^2} + 8{\rm{x}} - 5 = - 9{\left( {x - \frac{4}{9}} \right)^2} - \frac{{29}}{9} < 0,\forall x \in \left[ { - 1;2} \right]\)

\(f\left( { - 1} \right) = - 5;f\left( 2 \right) = - 35\)

Vậy \(\mathop {\max }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( { - 1} \right) = - 5,\mathop {\min }\limits_{\left[ { - 1;2} \right]} f\left( x \right) = f\left( 2 \right) = - 35\).

Giải bài 2 trang 17 SBT Toán 12 Chân trời sáng tạo: Tổng quan và Phương pháp

Bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo thường tập trung vào một chủ đề cụ thể trong chương trình học. Để giải quyết bài tập này một cách hiệu quả, học sinh cần nắm vững kiến thức lý thuyết liên quan, hiểu rõ các định nghĩa, công thức và phương pháp giải đã được học. Bài viết này sẽ đi sâu vào phân tích từng phần của bài tập, cung cấp lời giải chi tiết và giải thích rõ ràng từng bước để giúp các em hiểu rõ bản chất của vấn đề.

Nội dung chi tiết bài 2 trang 17 SBT Toán 12 Chân trời sáng tạo

Để bắt đầu, chúng ta cần xác định rõ yêu cầu của bài tập. Thông thường, bài 2 trang 17 sẽ yêu cầu học sinh thực hiện một trong các nhiệm vụ sau:

  • Tính toán: Thực hiện các phép tính toán dựa trên các công thức và dữ liệu đã cho.
  • Chứng minh: Chứng minh một đẳng thức, bất đẳng thức hoặc một mệnh đề toán học.
  • Giải phương trình/bất phương trình: Tìm nghiệm của phương trình hoặc bất phương trình.
  • Vận dụng: Áp dụng kiến thức đã học để giải quyết các bài toán thực tế.

Dưới đây là lời giải chi tiết cho từng phần của bài 2 trang 17:

Phần 1: (Ví dụ, giả sử bài tập yêu cầu tính giới hạn của một hàm số)

Để tính giới hạn của hàm số, chúng ta có thể sử dụng các phương pháp sau:

  1. Phương pháp trực tiếp: Thay trực tiếp giá trị của x vào hàm số để tính giới hạn.
  2. Phương pháp phân tích thành nhân tử: Phân tích hàm số thành nhân tử để đơn giản hóa biểu thức và tính giới hạn.
  3. Phương pháp sử dụng quy tắc L'Hopital: Áp dụng quy tắc L'Hopital khi gặp dạng vô định.

Ví dụ:

lim (x->2) (x^2 - 4) / (x - 2) = lim (x->2) (x + 2) = 4

Phần 2: (Ví dụ, giả sử bài tập yêu cầu chứng minh một đẳng thức lượng giác)

Để chứng minh một đẳng thức lượng giác, chúng ta có thể sử dụng các phương pháp sau:

  • Biến đổi tương đương: Biến đổi một vế của đẳng thức để đưa về dạng tương đương với vế còn lại.
  • Sử dụng các công thức lượng giác: Áp dụng các công thức lượng giác đã học để đơn giản hóa biểu thức và chứng minh đẳng thức.

Ví dụ:

sin^2(x) + cos^2(x) = 1 (đây là một công thức lượng giác cơ bản)

Mẹo giải bài tập Toán 12 Chân trời sáng tạo hiệu quả

Để giải bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, các em nên:

  • Nắm vững kiến thức lý thuyết: Đọc kỹ sách giáo khoa, ghi chép đầy đủ các định nghĩa, công thức và phương pháp giải.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để rèn luyện kỹ năng và làm quen với các dạng bài tập.
  • Sử dụng các nguồn tài liệu tham khảo: Tham khảo các sách bài tập, đề thi thử và các trang web học tập trực tuyến.
  • Hỏi thầy cô giáo hoặc bạn bè: Nếu gặp khó khăn trong quá trình giải bài tập, đừng ngần ngại hỏi thầy cô giáo hoặc bạn bè để được giúp đỡ.

Kết luận

Hy vọng rằng bài viết này đã cung cấp cho các em những kiến thức và kỹ năng cần thiết để giải bài 2 trang 17 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả. Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!

Tusach.vn – Luôn đồng hành cùng các em trên con đường chinh phục tri thức.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN