Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài 3 trang 77, từ đó nâng cao khả năng giải toán của mình.
Chúng tôi luôn cố gắng trình bày lời giải một cách dễ hiểu nhất, kèm theo các lưu ý quan trọng để bạn có thể tự tin làm bài tập.
Cho hai điểm \(A\left( {2;0;1} \right)\) và \(B\left( {0;5; - 1} \right)\). Tích vô hướng của hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) bằng A. ‒2. B. ‒1. C. 1. D. 2.
Đề bài
Cho hai điểm \(A\left( {2;0;1} \right)\) và \(B\left( {0;5; - 1} \right)\). Tích vô hướng của hai vectơ \(\overrightarrow {OA} \) và \(\overrightarrow {OB} \) bằng
A. ‒2.
B. ‒1.
C. 1.
D. 2.
Phương pháp giải - Xem chi tiết
‒ Sử dụng toạ độ của vectơ: \(\overrightarrow {OM} = \left( {a;b;c} \right) \Leftrightarrow M\left( {a;b;c} \right)\).
‒ Sử dụng công thức tính tích vô hướng của hai vectơ \(\overrightarrow u = \left( {{x_1};{y_1};{z_1}} \right)\) và \(\overrightarrow v = \left( {{x_2};{y_2};{z_2}} \right)\):
\(\overrightarrow u .\overrightarrow v = {x_1}.{x_2} + {y_1}.{y_2} + {z_1}.{z_2}\).
Lời giải chi tiết
\(\begin{array}{l}A\left( {2;0;1} \right) \Leftrightarrow \overrightarrow {OA} = \left( {2;0;1} \right);B\left( {0;5; - 1} \right) \Leftrightarrow \overrightarrow {OB} = \left( {0;5; - 1} \right)\\\overrightarrow {OA} .\overrightarrow {OB} = 2.0 + 0.5 + 1.\left( { - 1} \right) = - 1\end{array}\)
Chọn B.
Bài 3 trang 77 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và hàm hợp. Việc nắm vững các quy tắc này là nền tảng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Để giúp bạn hiểu rõ hơn về cách giải bài 3 trang 77, chúng tôi sẽ trình bày lời giải chi tiết cho từng câu hỏi:
Đề bài: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Lời giải:
Đề bài: Tính đạo hàm của hàm số g(x) = sin(x) * cos(x).
Lời giải:
Áp dụng quy tắc đạo hàm của tích: g'(x) = (sin(x))' * cos(x) + sin(x) * (cos(x))'
Ta có: (sin(x))' = cos(x), (cos(x))' = -sin(x)
Vậy: g'(x) = cos(x) * cos(x) + sin(x) * (-sin(x)) = cos2(x) - sin2(x)
Đề bài: Tính đạo hàm của hàm số h(x) = (x2 + 1) / (x - 1).
Lời giải:
Áp dụng quy tắc đạo hàm của thương: h'(x) = [(x2 + 1)' * (x - 1) - (x2 + 1) * (x - 1)'] / (x - 1)2
Ta có: (x2 + 1)' = 2x, (x - 1)' = 1
Vậy: h'(x) = [2x * (x - 1) - (x2 + 1) * 1] / (x - 1)2 = (2x2 - 2x - x2 - 1) / (x - 1)2 = (x2 - 2x - 1) / (x - 1)2
Tusach.vn luôn cập nhật lời giải chi tiết và chính xác cho các bài tập trong sách giáo khoa và sách bài tập Toán 12 Chân trời sáng tạo. Hãy truy cập website của chúng tôi để được hỗ trợ tốt nhất trong quá trình học tập.
| Quy tắc | Công thức |
|---|---|
| Đạo hàm của tổng/hiệu | (u ± v)' = u' ± v' |
| Đạo hàm của tích | (uv)' = u'v + uv' |
| Đạo hàm của thương | (u/v)' = (u'v - uv') / v2 |
| Đạo hàm của hàm hợp | (f(g(x)))' = f'(g(x)) * g'(x) |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập