1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 6 trang 60 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 60 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 6 trang 60 SBT Toán 12 Chân trời sáng tạo

Chào mừng bạn đến với lời giải chi tiết bài 6 trang 60 sách bài tập Toán 12 Chân trời sáng tạo trên tusach.vn. Bài viết này sẽ cung cấp đáp án chính xác, dễ hiểu cùng với phương pháp giải chi tiết, giúp bạn nắm vững kiến thức và tự tin giải các bài tập tương tự.

Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, hỗ trợ tối đa cho quá trình học tập của bạn.

Trong không gian \(Oxyz\) (đơn vị trên các trục toạ độ là mét), một ngọn hải đăng có bóng đèn đặt tại điểm \(I\left( {20;40;60} \right)\). a) Cho biết bán kính phủ sáng của đèn trên hải đăng là 3 km, viết phương trình mặt cầu biểu diễn ranh giới của vùng phủ sáng của hải đăng trong không gian. b) Một người đi biển đang ở vị trí \(M\left( {420;340;0} \right)\). Người đó có thể nhìn thấy được ánh sáng của hải đăng hay không? Giải thích.

Đề bài

Trong không gian \(Oxyz\) (đơn vị trên các trục toạ độ là mét), một ngọn hải đăng có bóng đèn đặt tại điểm \(I\left( {20;40;60} \right)\).

a) Cho biết bán kính phủ sáng của đèn trên hải đăng là 3 km, viết phương trình mặt cầu biểu diễn ranh giới của vùng phủ sáng của hải đăng trong không gian.

b) Một người đi biển đang ở vị trí \(M\left( {420;340;0} \right)\). Người đó có thể nhìn thấy được ánh sáng của hải đăng hay không? Giải thích.

Giải bài 6 trang 60 sách bài tập toán 12 - Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 6 trang 60 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Phương trình của mặt cầu tâm \(I\left( {a;b;c} \right)\) bán kính \(R\) là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).

‒ Kiểm tra điểm \(M\) nằm trong hoặc nằm trên đường tròn thì người đó có thể nhìn thấy được ánh sáng của hải đăng.

Lời giải chi tiết

a) Phương trình của mặt cầu tâm \(I\left( {20;40;60} \right)\) và bán kính \(R = 3000\left( m \right)\) là:

\({\left( {x - 20} \right)^2} + {\left( {y - 40} \right)^2} + {\left( {z - 60} \right)^2} = {3000^2}\) hay \({\left( {x - 20} \right)^2} + {\left( {y - 40} \right)^2} + {\left( {z - 60} \right)^2} = 9000000\).

b) Ta có: \(IM = \sqrt {{{\left( {420 - 20} \right)}^2} + {{\left( {340 - 40} \right)}^2} + {{\left( {0 - 60} \right)}^2}} = 20\sqrt {634} < R\).

Vậy \(M\) nằm trong mặt cầu \(\left( S \right)\).

Do đó người đó có thể nhìn thấy được ánh sáng của hải đăng.

Giải bài 6 trang 60 SBT Toán 12 Chân trời sáng tạo: Tổng quan và Phương pháp giải

Bài 6 trang 60 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Để giải quyết bài tập này một cách hiệu quả, bạn cần nắm vững các kiến thức cơ bản về đạo hàm và luyện tập thường xuyên.

Nội dung chi tiết bài 6 trang 60 SBT Toán 12 Chân trời sáng tạo

Bài 6 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số đơn giản: Yêu cầu tính đạo hàm của các hàm số đơn giản như đa thức, phân thức, hàm mũ, hàm logarit.
  • Dạng 2: Tính đạo hàm của hàm số phức tạp: Yêu cầu tính đạo hàm của các hàm số phức tạp hơn, sử dụng quy tắc đạo hàm của tích, thương, hàm hợp.
  • Dạng 3: Tìm đạo hàm cấp hai: Yêu cầu tìm đạo hàm cấp hai của hàm số, tức là đạo hàm của đạo hàm.
  • Dạng 4: Ứng dụng đạo hàm để giải quyết các bài toán thực tế: Yêu cầu sử dụng đạo hàm để giải quyết các bài toán liên quan đến vận tốc, gia tốc, tối ưu hóa,...

Lời giải chi tiết bài 6 trang 60 SBT Toán 12 Chân trời sáng tạo

Dưới đây là lời giải chi tiết cho từng phần của bài 6 trang 60 sách bài tập Toán 12 Chân trời sáng tạo:

Bài 6.1:

Đề bài: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1

Lời giải:

f'(x) = 3x2 + 4x - 5

Bài 6.2:

Đề bài: Tính đạo hàm của hàm số g(x) = (x2 + 1) / (x - 1)

Lời giải:

g'(x) = [(2x)(x-1) - (x2 + 1)(1)] / (x-1)2 = (x2 - 2x - 1) / (x-1)2

Bài 6.3:

Đề bài: Tìm đạo hàm cấp hai của hàm số h(x) = sin(x)

Lời giải:

h'(x) = cos(x)

h''(x) = -sin(x)

Mẹo giải bài tập đạo hàm hiệu quả

  1. Nắm vững các công thức đạo hàm cơ bản: Đạo hàm của xn, sin(x), cos(x), ex, ln(x),...
  2. Sử dụng quy tắc đạo hàm một cách linh hoạt: Quy tắc đạo hàm của tổng, hiệu, tích, thương, hàm hợp.
  3. Kiểm tra lại kết quả: Sau khi tính đạo hàm, hãy kiểm tra lại kết quả bằng cách đạo hàm ngược hoặc sử dụng các công cụ tính đạo hàm trực tuyến.
  4. Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài tập và rèn luyện kỹ năng giải quyết vấn đề.

Tusach.vn - Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm sách giáo khoa, sách bài tập, đề thi, lời giải chi tiết và các bài viết hướng dẫn giải bài tập. Chúng tôi cam kết mang đến cho bạn những tài liệu chất lượng, chính xác và dễ hiểu, giúp bạn học tập hiệu quả và đạt kết quả tốt nhất.

Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập Toán 12 hữu ích khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN