1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5 trang 108 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 108 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 108 sách bài tập Toán 12 Chân trời sáng tạo

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài 5 trang 108, đồng thời cung cấp kiến thức nền tảng cần thiết để giải quyết các bài toán tương tự.

Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả và dễ hiểu nhất cho các em học sinh.

Biểu đồ dưới đây biểu diễn mẫu số liệu ghép nhóm mức lương nhân viên một công ty (đơn vị: triệu đồng). Biết công ty có 25 nhân viên. Sử dụng biểu đồ trên, viết số thích hợp vào chỗ chấm trong các câu sau: a) Tần số của nhóm (left[ {6;8} right)) là ……… b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là ……… triệu đồng. c) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là (frac{a}{{12}}) với (a) bằng ……… d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là (frac{b}{{2

Đề bài

Biểu đồ dưới đây biểu diễn mẫu số liệu ghép nhóm mức lương nhân viên một công ty (đơn vị: triệu đồng).

Giải bài 5 trang 108 sách bài tập toán 12 - Chân trời sáng tạo 1

Biết công ty có 25 nhân viên.

Sử dụng biểu đồ trên, viết số thích hợp vào chỗ chấm trong các câu sau:

a) Tần số của nhóm \(\left[ {6;8} \right)\) là ………

b) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là ……… triệu đồng.

c) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên là \(\frac{a}{{12}}\) với \(a\) bằng ………

d) Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \(\frac{b}{{24}}\) với \(b\) bằng ………

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 108 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).

‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:

Tứ phân vị thứ \(k\) được xác định như sau: \({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}\left( {{u_{m + 1}} - {u_m}} \right)\)

trong đó:

• \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu;

• \(\left[ {{u_m};{u_{m + 1}}} \right)\) là nhóm chứa tứ phân vị thứ \(k\);

• \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ \(k\);

• \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).

‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).

Lời giải chi tiết

Ta có bảng tần số ghép nhóm như sau:

Giải bài 5 trang 108 sách bài tập toán 12 - Chân trời sáng tạo 3

Vậy tần số của nhóm \(\left[ {6;8} \right)\) là 8%.

Khoảng biến thiên của mẫu số liệu trên là: \(R = 16 - 6 = 10\) (triệu đồng).

Gọi \({x_1};{x_2};...;{x_{100}}\) là mẫu số liệu gốc.

Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_{26}} \in \left[ {8;10} \right)\).

Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = 8 + \frac{{\frac{{1.100}}{4} - 8}}{{24}}\left( {10 - 8} \right) = \frac{{113}}{{12}}\).

Vậy \(a = 113\).

Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{76}} \in \left[ {12;14} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:

\({Q_3} = 12 + \frac{{\frac{{3.100}}{4} - \left( {8 + 24 + 40} \right)}}{{16}}\left( {14 - 12} \right) = \frac{{99}}{8}\)

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:

\(\Delta Q = {Q_3} - {Q_1} = \frac{{99}}{8} - \frac{{113}}{{12}} = \frac{{71}}{{24}}\) (triệu đồng). Vậy \(b = 71\).

a) 2.

b) 10.

c) 113.

d) 71.

Giải bài 5 trang 108 Sách bài tập Toán 12 Chân trời sáng tạo: Tổng quan và Hướng dẫn chi tiết

Bài 5 trang 108 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học về đạo hàm. Bài tập này thường tập trung vào việc vận dụng các quy tắc tính đạo hàm của hàm số, đặc biệt là đạo hàm của tổng, hiệu, tích, thương và đạo hàm hàm hợp. Việc nắm vững các quy tắc này là vô cùng quan trọng để giải quyết bài toán một cách chính xác và hiệu quả.

Nội dung chính của bài 5 trang 108

Bài 5 thường yêu cầu học sinh:

  • Tính đạo hàm của các hàm số phức tạp.
  • Áp dụng quy tắc đạo hàm để giải các bài toán thực tế.
  • Phân tích và đánh giá kết quả đạo hàm.

Hướng dẫn giải chi tiết bài 5 trang 108

Để giải bài 5 trang 108 một cách hiệu quả, bạn cần thực hiện theo các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài và xác định chính xác hàm số cần tính đạo hàm.
  2. Chọn quy tắc đạo hàm phù hợp: Dựa vào cấu trúc của hàm số, chọn quy tắc đạo hàm phù hợp (quy tắc tổng, hiệu, tích, thương, hàm hợp,...).
  3. Áp dụng quy tắc đạo hàm: Áp dụng quy tắc đạo hàm đã chọn để tính đạo hàm của hàm số.
  4. Rút gọn kết quả: Rút gọn kết quả đạo hàm để có được biểu thức đơn giản nhất.
  5. Kiểm tra lại kết quả: Kiểm tra lại kết quả đạo hàm để đảm bảo tính chính xác.

Ví dụ minh họa giải bài 5 trang 108

Ví dụ: Tính đạo hàm của hàm số f(x) = x2 + 3x - 5.

Giải:

Áp dụng quy tắc đạo hàm của tổng và hiệu, ta có:

f'(x) = (x2)' + (3x)' - (5)'

f'(x) = 2x + 3 - 0

f'(x) = 2x + 3

Các dạng bài tập thường gặp trong bài 5 trang 108

Ngoài việc tính đạo hàm trực tiếp, bài 5 trang 108 còn có thể xuất hiện các dạng bài tập sau:

  • Tìm đạo hàm cấp hai: Tính đạo hàm của đạo hàm (đạo hàm cấp hai).
  • Đạo hàm của hàm số lượng giác: Tính đạo hàm của các hàm số lượng giác (sin, cos, tan, cot).
  • Đạo hàm của hàm số mũ và logarit: Tính đạo hàm của các hàm số mũ và logarit.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải bài tập đạo hàm một cách hiệu quả, bạn có thể áp dụng một số mẹo sau:

  • Nắm vững các quy tắc đạo hàm: Đây là nền tảng quan trọng nhất để giải quyết các bài toán đạo hàm.
  • Luyện tập thường xuyên: Giải nhiều bài tập khác nhau để làm quen với các dạng bài và rèn luyện kỹ năng.
  • Sử dụng các công cụ hỗ trợ: Sử dụng máy tính bỏ túi hoặc các phần mềm tính đạo hàm để kiểm tra kết quả.
  • Tham khảo các tài liệu học tập: Đọc sách giáo khoa, sách bài tập và các tài liệu tham khảo khác để hiểu rõ hơn về đạo hàm.

Tusach.vn – Đồng hành cùng bạn trên con đường học tập

Tusach.vn tự hào là một trong những website cung cấp lời giải bài tập Toán 12 Chân trời sáng tạo uy tín và chất lượng nhất. Chúng tôi luôn cập nhật những lời giải mới nhất và chính xác nhất để giúp các bạn học sinh học tập tốt hơn. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!

Chúc các bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN