1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5 trang 22 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 22 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 22 sách bài tập Toán 12 Chân trời sáng tạo

Tusach.vn xin giới thiệu lời giải chi tiết bài 5 trang 22 SBT Toán 12 Chân trời sáng tạo. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12 Chân trời sáng tạo, đáp ứng nhu cầu học tập của học sinh.

Chi phí để làm sạch \(p\% \) lượng dầu loang từ một sự cố trên biển có thể được xấp xỉ bởi công thức \(C\left( p \right) = \frac{{2000p}}{{100 - p}}\) (tỉ đồng). a) Tính chi phí để làm sạch 95%, 96%, 97%, 98% và 99% lượng dầu loang. b) Tìm các tiệm cận của đồ thị hàm số \(C\left( p \right)\).

Đề bài

Chi phí để làm sạch \(p\% \) lượng dầu loang từ một sự cố trên biển có thể được xấp xỉ bởi công thức

\(C\left( p \right) = \frac{{2000p}}{{100 - p}}\) (tỉ đồng).

a) Tính chi phí để làm sạch 95%, 96%, 97%, 98% và 99% lượng dầu loang.

b) Tìm các tiệm cận của đồ thị hàm số \(C\left( p \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 22 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:

\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)

thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.

‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.

Lời giải chi tiết

a) \(C\left( {95} \right) = \frac{{2000.95}}{{100 - 95}} = 38000\) tỉ đồng.

\(C\left( {95} \right) = \frac{{2000.95}}{{100 - 95}} = 38000\) tỉ đồng.

\(C\left( {96} \right) = \frac{{2000.96}}{{100 - 96}} = 48000\) tỉ đồng.

\(C\left( {97} \right) = \frac{{2000.97}}{{100 - 97}} = 64667\) tỉ đồng.

\(C\left( {98} \right) = \frac{{2000.98}}{{100 - 98}} = 98000\) tỉ đồng.

\(C\left( {99} \right) = \frac{{2000.99}}{{100 - 99}} = 198000\) tỉ đồng.

b) Tập xác định: \(D = \mathbb{R}\backslash \left\{ {100} \right\}\).

Ta có:

• \(\mathop {\lim }\limits_{p \to {{100}^ - }} C\left( p \right) = \mathop {\lim }\limits_{p \to {{100}^ - }} \frac{{2000p}}{{100 - p}} = + \infty ;\mathop {\lim }\limits_{p \to {{100}^ + }} C\left( p \right) = \mathop {\lim }\limits_{p \to {{100}^ + }} \frac{{2000p}}{{100 - p}} = - \infty \)

Vậy \(p = 100\) là các tiệm cận đứng của đồ thị hàm số đã cho.

• \(\mathop {\lim }\limits_{x \to + \infty } C\left( p \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{2000p}}{{100 - p}} = - 2000;\mathop {\lim }\limits_{x \to - \infty } C\left( p \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{2000p}}{{100 - p}} = - 2000\)

Vậy \(y = - 2000\) là tiệm cận ngang của đồ thị hàm số đã cho.

Giải bài 5 trang 22 SBT Toán 12 Chân trời sáng tạo: Tổng quan và hướng dẫn chi tiết

Bài 5 trang 22 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm để giải quyết các bài toán cụ thể. Dưới đây là hướng dẫn chi tiết và lời giải cho bài tập này, giúp bạn hiểu rõ hơn về cách tiếp cận và giải quyết các dạng bài tương tự.

Nội dung bài tập 5 trang 22 SBT Toán 12 Chân trời sáng tạo

Bài tập 5 thường bao gồm các yêu cầu sau:

  • Tính đạo hàm của hàm số tại một điểm cho trước.
  • Tìm đạo hàm của hàm số.
  • Xác định các điểm cực trị của hàm số.
  • Khảo sát hàm số bằng đạo hàm.

Lời giải chi tiết bài 5 trang 22 SBT Toán 12 Chân trời sáng tạo

Để giải bài tập này, bạn cần nắm vững các kiến thức sau:

  1. Các công thức đạo hàm cơ bản (đạo hàm của hàm số lũy thừa, hàm số lượng giác, hàm số mũ, hàm số logarit).
  2. Các quy tắc đạo hàm (quy tắc cộng, trừ, nhân, chia, đạo hàm hợp).
  3. Điều kiện cần và đủ để hàm số đạt cực trị.

Ví dụ minh họa:

Giả sử bài tập yêu cầu tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1. Ta thực hiện như sau:

f'(x) = 3x2 + 4x - 5

Các dạng bài tập tương tự và phương pháp giải

Ngoài bài tập 5, sách bài tập Toán 12 Chân trời sáng tạo còn nhiều bài tập tương tự khác. Để giải quyết các bài tập này, bạn có thể áp dụng các phương pháp sau:

  • Phân tích bài toán: Xác định rõ yêu cầu của bài toán và các thông tin đã cho.
  • Chọn phương pháp giải: Lựa chọn phương pháp giải phù hợp với từng dạng bài tập.
  • Thực hiện tính toán: Thực hiện các phép tính toán một cách chính xác và cẩn thận.
  • Kiểm tra kết quả: Kiểm tra lại kết quả để đảm bảo tính đúng đắn.

Mẹo học tập hiệu quả

Để học tốt môn Toán 12, bạn nên:

  • Học thuộc các công thức và quy tắc đạo hàm.
  • Luyện tập thường xuyên các bài tập khác nhau.
  • Tìm kiếm sự giúp đỡ từ giáo viên hoặc bạn bè khi gặp khó khăn.
  • Sử dụng các tài liệu tham khảo và công cụ hỗ trợ học tập.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là một website cung cấp đầy đủ và chính xác các lời giải bài tập Toán 12 Chân trời sáng tạo. Chúng tôi cam kết mang đến cho bạn những tài liệu học tập chất lượng, giúp bạn học tập hiệu quả và đạt kết quả tốt nhất. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!

Công thứcMô tả
(xn)' = nxn-1Đạo hàm của hàm số lũy thừa
(sin x)' = cos xĐạo hàm của hàm số sin x

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN