Tusach.vn xin giới thiệu lời giải chi tiết bài 4 trang 22 SBT Toán 12 Chân trời sáng tạo. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải SBT Toán 12 Chân trời sáng tạo, đáp ứng nhu cầu học tập của học sinh.
Tìm các tiệm cận của đồ thị hàm số sau: a) (y = frac{{{x^2} + 2}}{{{x^2} + 2x - 3}}); b) (y = sqrt {{x^2} - 16} ).
Đề bài
Tìm các tiệm cận của đồ thị hàm số sau:
a) \(y = \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}}\);
b) \(y = \sqrt {{x^2} - 16} \).
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc
\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\)
Lời giải chi tiết
a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 3;1} \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to - {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {3^ - }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = + \infty ;\mathop {\lim }\limits_{x \to - {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {3^ + }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = - \infty \)
\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = - \infty ;\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = + \infty \)
Vậy \(x = - 3,x = 1\) là các tiệm cận đứng của đồ thị hàm số đã cho.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = 1;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} + 2}}{{{x^2} + 2x - 3}} = 1\)
Vậy \(y = 1\) là tiệm cận ngang của đồ thị hàm số đã cho.
b) Tập xác định: \(D = \left( { - \infty ; - 4} \right] \cup \left[ {4; + \infty } \right)\).
Ta có:
• \(\mathop {\lim }\limits_{x \to - {4^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {4^ - }} \sqrt {{x^2} - 16} = 0;\mathop {\lim }\limits_{x \to - {4^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {4^ + }} \sqrt {{x^2} - 16} = 0\)
\(\mathop {\lim }\limits_{x \to {4^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} \sqrt {{x^2} - 16} = 0;\mathop {\lim }\limits_{x \to {4^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {4^ + }} \sqrt {{x^2} - 16} = 0\)
Vậy hàm số không có tiệm cận đứng.
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\sqrt {{x^2} - 16} }}{x} = 1\) và
\(\begin{array}{l}b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\sqrt {{x^2} - 16} - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{\left( {\sqrt {{x^2} - 16} - x} \right)\left( {\sqrt {{x^2} - 16} + x} \right)}}{{\sqrt {{x^2} - 16} + x}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 16}}{{\sqrt {{x^2} - 16} + x}} = 0\end{array}\)
Vậy đường thẳng \(y = x\) là tiệm cận xiên của đồ thị hàm số đã cho.
\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to - \infty } \frac{{\sqrt {{x^2} - 16} }}{x} = - 1\) và
\(\begin{array}{l}b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) + x} \right] = \mathop {\lim }\limits_{x \to - \infty } \left[ {\sqrt {{x^2} - 16} + x} \right] = \mathop {\lim }\limits_{x \to - \infty } \frac{{\left( {\sqrt {{x^2} - 16} - x} \right)\left( {\sqrt {{x^2} - 16} + x} \right)}}{{\sqrt {{x^2} - 16} - x}}\\ = \mathop {\lim }\limits_{x \to - \infty } \frac{{ - 16}}{{\sqrt {{x^2} - 16} - x}} = 0\end{array}\)
Vậy đường thẳng \(y = - x\) là tiệm cận xiên của đồ thị hàm số đã cho.
Bài 4 trang 22 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.
Bài 4 thường bao gồm các dạng bài tập sau:
Để giải bài 4 trang 22 SBT Toán 12 Chân trời sáng tạo một cách hiệu quả, học sinh cần:
Dưới đây là lời giải chi tiết bài 4 trang 22 SBT Toán 12 Chân trời sáng tạo:
(Giả sử đây là nội dung bài toán và lời giải chi tiết. Do không có nội dung cụ thể của bài toán, phần này sẽ được giữ trống. Tusach.vn sẽ cung cấp lời giải đầy đủ và chính xác tại website.)
Để giải nhanh bài 4 trang 22 SBT Toán 12 Chân trời sáng tạo, học sinh có thể áp dụng một số mẹo sau:
Ngoài sách bài tập Toán 12 Chân trời sáng tạo, học sinh có thể tham khảo thêm các tài liệu sau:
Bài 4 trang 22 SBT Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp học sinh rèn luyện kỹ năng giải toán về đạo hàm. Hy vọng với hướng dẫn chi tiết và lời giải chính xác của Tusach.vn, các em học sinh sẽ tự tin hơn trong việc giải quyết bài tập này và đạt kết quả tốt trong môn Toán.
Tusach.vn – Đồng hành cùng học sinh trên con đường chinh phục tri thức!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập