Tusach.vn xin giới thiệu lời giải chi tiết bài 3 trang 22 SBT Toán 12 Chân trời sáng tạo. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12 Chân trời sáng tạo, đáp ứng nhu cầu học tập của học sinh.
Tìm các tiệm cận của đồ thị hàm số sau: a) (y = 2{rm{x}} + 1 + frac{1}{{x - 3}}); b) (y = frac{{ - 3{{rm{x}}^2} + 16{rm{x}} - 3}}{{x - 5}}); c) (y = frac{{ - 6{x^2} + 7{rm{x}} + 1}}{{3{rm{x}} + 1}}).
Đề bài
Tìm các tiệm cận của đồ thị hàm số sau:
a) \(y = 2{\rm{x}} + 1 + \frac{1}{{x - 3}}\);
b) \(y = \frac{{ - 3{{\rm{x}}^2} + 16{\rm{x}} - 3}}{{x - 5}}\);
c) \(y = \frac{{ - 6{x^2} + 7{\rm{x}} + 1}}{{3{\rm{x}} + 1}}\).
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc
\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\)
Lời giải chi tiết
a) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 3 \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to {3^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ - }} \left( {2{\rm{x}} + 1 + \frac{1}{{x - 3}}} \right) = - \infty ;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {3^ + }} \left( {2{\rm{x}} + 1 + \frac{1}{{x - 3}}} \right) = + \infty \)
Vậy \({\rm{x}} = 3\) là tiệm cận đứng của đồ thị hàm số đã cho.
• \(y = 2{\rm{x}} + 1 + \frac{1}{{x - 3}} = \frac{{2{{\rm{x}}^2} - 5{\rm{x}} - 2}}{{x - 3}}\)
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{2{{\rm{x}}^2} - 5{\rm{x}} - 2}}{{x\left( {x - 3} \right)}} = 2\) và
\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - 2x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{2{{\rm{x}}^2} - 5{\rm{x}} - 2}}{{x - 3}} - 2x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 2}}{{x - 3}} = 1\)
Vậy đường thẳng \(y = 2{\rm{x}} + 1\) là tiệm cận xiên của đồ thị hàm số đã cho.
b) Tập xác định: \(D = \mathbb{R}\backslash \left\{ 5 \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to {5^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {5^ - }} \frac{{ - 3{{\rm{x}}^2} + 16{\rm{x}} - 3}}{{x - 5}} = - \infty ;\mathop {\lim }\limits_{x \to {5^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {5^ + }} \frac{{ - 3{{\rm{x}}^2} + 16{\rm{x}} - 3}}{{x - 5}} = + \infty \)
Vậy \({\rm{x}} = 5\) là tiệm cận đứng của đồ thị hàm số đã cho.
• \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 3{{\rm{x}}^2} + 16{\rm{x}} - 3}}{{x\left( {x - 5} \right)}} = - 3\) và
\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 3x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{ - 3{{\rm{x}}^2} + 16{\rm{x}} - 3}}{{x - 5}} + 3x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{x - 3}}{{x - 5}} = 1\)
Vậy đường thẳng \(y = - 3{\rm{x}} + 1\) là tiệm cận xiên của đồ thị hàm số đã cho.
c) Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - \frac{1}{3}} \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ - }} \frac{{ - 6{x^2} + 7{\rm{x}} + 1}}{{3{\rm{x}} + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {{\frac{1}{3}}^ + }} \frac{{ - 6{x^2} + 7{\rm{x}} + 1}}{{3{\rm{x}} + 1}} = - \infty \)
Vậy \({\rm{x}} = - \frac{1}{3}\) là tiệm cận đứng của đồ thị hàm số đã cho.
• \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 6{x^2} + 7{\rm{x}} + 1}}{{x\left( {3{\rm{x}} + 1} \right)}} = - 2\) và
\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + 2x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{ - 6{x^2} + 7{\rm{x}} + 1}}{{3{\rm{x}} + 1}} + 2x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{9{\rm{x}} + 1}}{{3{\rm{x}} + 1}} = 3\)
Vậy đường thẳng \(y = - 2{\rm{x}} + 3\) là tiệm cận xiên của đồ thị hàm số đã cho.
Bài 3 trang 22 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và kỹ năng giải toán là yếu tố then chốt để hoàn thành tốt bài tập này.
Bài 3 thường bao gồm các dạng bài tập sau:
Để giải bài 3 trang 22 SBT Toán 12 Chân trời sáng tạo một cách hiệu quả, bạn cần:
Ví dụ: Tính đạo hàm của hàm số f(x) = x3 + 2x2 - 5x + 1.
Giải:
f'(x) = 3x2 + 4x - 5
Tusach.vn là một website cung cấp đầy đủ và chính xác các tài liệu học tập Toán 12, bao gồm sách giáo khoa, sách bài tập, đề thi và lời giải chi tiết. Chúng tôi cam kết mang đến cho học sinh những trải nghiệm học tập tốt nhất. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
| Chủ đề | Nội dung |
|---|---|
| Đạo hàm | Công thức, quy tắc, ứng dụng |
| Cực trị | Tìm cực đại, cực tiểu |
| Khảo sát hàm số | Biến thiên, đồ thị |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập