1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 7 trang 55 SBT Toán 12 Chân trời sáng tạo

Chào mừng bạn đến với lời giải chi tiết bài 7 trang 55 sách bài tập Toán 12 Chân trời sáng tạo trên tusach.vn. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, hỗ trợ tối đa cho quá trình học tập của bạn.

Người ta muốn dựng một cột ăng-ten trên một sườn đồi. Ăng-ten được dựng thẳng đứng trong không gian \(Oxyz\) với độ dài đơn vị trên mỗi trục bằng 1 m. Gọi \(O\) là gốc cột, \(A\) là điểm buộc dây cáp vào cột ăng-ten và \(M,N\) là hai điểm neo dây cáp xuống mặt sườn đồi (Hình 6). Cho biết toạ độ các điểm nói trên lần lượt là \(O\left( {0;0;0} \right),A\left( {0;0;6} \right),M\left( {3; - 4;3} \right),\)\(N\left( { - 5; - 2;2} \right)\). a) Tính độ dài các đoạn dây cáp \(MA\) và \(NA\). b) Tính

Đề bài

Người ta muốn dựng một cột ăng-ten trên một sườn đồi. Ăng-ten được dựng thẳng đứng trong không gian \(Oxyz\) với độ dài đơn vị trên mỗi trục bằng 1 m. Gọi \(O\) là gốc cột, \(A\) là điểm buộc dây cáp vào cột ăng-ten và \(M,N\) là hai điểm neo dây cáp xuống mặt sườn đồi (Hình 6). Cho biết toạ độ các điểm nói trên lần lượt là \(O\left( {0;0;0} \right),A\left( {0;0;6} \right),M\left( {3; - 4;3} \right),\)\(N\left( { - 5; - 2;2} \right)\).

Giải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo 1

a) Tính độ dài các đoạn dây cáp \(MA\) và \(NA\).

b) Tính góc tạo bởi các sợi dây cáp \(MA,NA\) với mặt phẳng sườn đồi.

Phương pháp giải - Xem chi tiếtGiải bài 7 trang 55 sách bài tập toán 12 - Chân trời sáng tạo 2

‒ Sử dụng công thức tính độ dài đoạn thẳng \(AB\):

\(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {{x_B} - {x_A}} \right)}^2} + {{\left( {{y_B} - {y_A}} \right)}^2} + {{\left( {{z_B} - {z_A}} \right)}^2}} \).

‒ Đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {{a_1};{b_1};{c_1}} \right)\) và mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó ta có:

\(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).

Lời giải chi tiết

a) Ta có: \(MA = \left| {\overrightarrow {MA} } \right| = \sqrt {{{\left( {0 - 4} \right)}^2} + {{\left( {0 - \left( { - 4} \right)} \right)}^2} + {{\left( {6 - 3} \right)}^2}} = \sqrt {34} \approx 5,8\left( m \right)\).

\(NA = \left| {\overrightarrow {NA} } \right| = \sqrt {{{\left( {0 - \left( { - 5} \right)} \right)}^2} + {{\left( {0 - \left( { - 2} \right)} \right)}^2} + {{\left( {6 - 2} \right)}^2}} = \sqrt {45} \approx 6,7\left( m \right)\).

b) Ta có: \(\overrightarrow {MA} = \left( { - 3;4;3} \right),\overrightarrow {NA} = \left( {5;2;4} \right),\overrightarrow {OM} = \left( {3; - 4;3} \right),\overrightarrow {ON} = \left( { - 5; - 2;2} \right)\)

\(\left[ {\overrightarrow {OM} ,\overrightarrow {ON} } \right] = \left( { - 2; - 21; - 26} \right)\).

Do đó \(\left( {OMN} \right)\) có vectơ pháp tuyến \(\overrightarrow n = \left( { - 2; - 21; - 26} \right)\).

Ta có:

\(\sin \left( {MA,\left( {OMN} \right)} \right) = \left| {\cos \left( {\overrightarrow {MA} ,\overrightarrow n } \right)} \right| = \frac{{\left| {\left( { - 3} \right).\left( { - 2} \right) + 4.\left( { - 21} \right) + 3.\left( { - 26} \right)} \right|}}{{\sqrt {{{\left( { - 3} \right)}^2} + {4^2} + {3^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 21} \right)}^2} + {{\left( { - 26} \right)}^2}} }} = \frac{{156}}{{\sqrt {38114} }}\)

Vậy \(\left( {MA,\left( {OMN} \right)} \right) \approx {53^ \circ }\).

\(\sin \left( {NA,\left( {OMN} \right)} \right) = \left| {\cos \left( {\overrightarrow {NA} ,\overrightarrow n } \right)} \right| = \frac{{\left| {5.\left( { - 2} \right) + 2.\left( { - 21} \right) + 4.\left( { - 26} \right)} \right|}}{{\sqrt {{5^2} + {2^2} + {4^2}} .\sqrt {{{\left( { - 2} \right)}^2} + {{\left( { - 21} \right)}^2} + {{\left( { - 26} \right)}^2}} }} = \frac{{156}}{{\sqrt {50445} }}\)

Vậy \(\left( {NA,\left( {OMN} \right)} \right) \approx {44^ \circ }\).

Giải bài 7 trang 55 SBT Toán 12 Chân trời sáng tạo: Tổng quan

Bài 7 trang 55 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học môn Toán lớp 12, tập trung vào chủ đề về Đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ chỉ phương, vectơ pháp tuyến, phương trình đường thẳng và mặt phẳng để giải quyết các bài toán liên quan đến vị trí tương quan giữa đường thẳng và mặt phẳng.

Nội dung bài 7 trang 55 SBT Toán 12 Chân trời sáng tạo

Bài 7 thường bao gồm các dạng bài tập sau:

  • Xác định vị trí tương quan giữa đường thẳng và mặt phẳng: Kiểm tra xem đường thẳng có nằm trong mặt phẳng, song song với mặt phẳng, cắt mặt phẳng hay không.
  • Tìm giao điểm của đường thẳng và mặt phẳng: Tính tọa độ giao điểm nếu đường thẳng cắt mặt phẳng.
  • Tính góc giữa đường thẳng và mặt phẳng: Sử dụng công thức tính góc giữa đường thẳng và mặt phẳng dựa trên vectơ chỉ phương của đường thẳng và vectơ pháp tuyến của mặt phẳng.
  • Tìm hình chiếu của đường thẳng lên mặt phẳng: Xác định phương trình đường thẳng là hình chiếu của đường thẳng ban đầu lên mặt phẳng.

Phương pháp giải bài 7 trang 55 SBT Toán 12 Chân trời sáng tạo

Để giải quyết hiệu quả bài 7 trang 55 SBT Toán 12 Chân trời sáng tạo, bạn cần nắm vững các kiến thức và kỹ năng sau:

  1. Nắm vững định nghĩa và tính chất của vectơ chỉ phương, vectơ pháp tuyến.
  2. Thành thạo phương trình đường thẳng và mặt phẳng.
  3. Biết cách sử dụng các công thức tính góc giữa đường thẳng và mặt phẳng.
  4. Rèn luyện kỹ năng giải hệ phương trình tuyến tính.

Lời giải chi tiết bài 7 trang 55 SBT Toán 12 Chân trời sáng tạo

Dưới đây là lời giải chi tiết cho từng phần của bài 7 trang 55 SBT Toán 12 Chân trời sáng tạo:

Ví dụ minh họa (Giả định bài tập cụ thể):

Bài tập: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương quan giữa đường thẳng d và mặt phẳng (P).

Lời giải:

Vectơ chỉ phương của đường thẳng d là a = (1, -1, 2). Vectơ pháp tuyến của mặt phẳng (P) là n = (2, -1, 1).

Ta có tích vô hướng a.n = 1*2 + (-1)*(-1) + 2*1 = 2 + 1 + 2 = 5 ≠ 0. Do đó, đường thẳng d không song song với mặt phẳng (P).

Để kiểm tra xem đường thẳng d có cắt mặt phẳng (P) hay không, ta thay tọa độ điểm thuộc d (ví dụ, điểm A(1, 2, 3) khi t = 0) vào phương trình mặt phẳng (P):

2*1 - 2 + 3 - 5 = -2 ≠ 0. Do đó, điểm A không thuộc mặt phẳng (P).

Vậy, đường thẳng d cắt mặt phẳng (P).

Luyện tập thêm

Để củng cố kiến thức và kỹ năng giải bài tập về đường thẳng và mặt phẳng trong không gian, bạn nên luyện tập thêm các bài tập tương tự trong sách bài tập Toán 12 Chân trời sáng tạo và các tài liệu tham khảo khác.

Kết luận

Bài 7 trang 55 SBT Toán 12 Chân trời sáng tạo là một bài tập quan trọng giúp bạn rèn luyện kỹ năng vận dụng kiến thức về đường thẳng và mặt phẳng trong không gian. Hy vọng với lời giải chi tiết và phương pháp giải được trình bày trong bài viết này, bạn sẽ tự tin hơn khi giải quyết các bài tập tương tự.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN