Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ giúp bạn hiểu rõ cách giải bài 4 trang 21, đồng thời cung cấp kiến thức nền tảng cần thiết để giải quyết các bài toán tương tự.
Chúng tôi luôn cố gắng mang đến những giải pháp học tập hiệu quả và dễ tiếp cận nhất cho học sinh.
Cho hàm số (y = {x^2} - 2x) có đồ thị (left( C right)). Kí hiệu (A) là hình phẳng giới hạn bởi (left( C right)), trục hoành và hai đường thẳng (x = 0,x = 2); (B) là hình phẳng giới hạn bởi (left( C right)), trục hoành và hai đường thẳng (x = 2,x = aleft( {a > 2} right)). Tìm giá trị của (a) để (A) và (B) có diện tích bằng nhau.
Đề bài
Cho hàm số \(y = {x^2} - 2x\) có đồ thị \(\left( C \right)\). Kí hiệu \(A\) là hình phẳng giới hạn bởi \(\left( C \right)\), trục hoành và hai đường thẳng \(x = 0,x = 2\); \(B\) là hình phẳng giới hạn bởi \(\left( C \right)\), trục hoành và hai đường thẳng \(x = 2,x = a\left( {a > 2} \right)\). Tìm giá trị của \(a\) để \(A\) và \(B\) có diện tích bằng nhau.

Phương pháp giải - Xem chi tiết
Sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).
Lời giải chi tiết
Ta có:
\(\begin{array}{l}{S_A} = \int\limits_0^2 {\left| {{x^2} - 2{\rm{x}}} \right|dx} = \int\limits_0^2 {\left( { - {x^2} + 2{\rm{x}}} \right)dx} = \left. {\left( { - \frac{{{x^3}}}{3} + {x^2}} \right)} \right|_0^2 = \frac{4}{3}\\{S_B} = \int\limits_2^a {\left| {{x^2} - 2{\rm{x}}} \right|dx} = \int\limits_2^a {\left( {{x^2} - 2{\rm{x}}} \right)dx} = \left. {\left( {\frac{{{x^3}}}{3} - {x^2}} \right)} \right|_2^a = \frac{{{a^3}}}{3} - {a^2} + \frac{4}{3}\end{array}\)
Vì \(A\) và \(B\) có diện tích bằng nhau nên ta có:
\(\frac{4}{3} = \frac{{{a^3}}}{3} - {a^2} + \frac{4}{3} \Leftrightarrow \frac{{{a^3}}}{3} - {a^2} = 0 \Leftrightarrow a = 0\) (loại) hoặc \({\rm{a}} = 3\).
Vậy với \({\rm{a}} = 3\) thì \(A\) và \(B\) có diện tích bằng nhau.
Bài 4 trang 21 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Để giải quyết bài toán này một cách hiệu quả, học sinh cần nắm vững các khái niệm cơ bản như đạo hàm, đạo hàm cấp hai, điểm cực trị, và khoảng đơn điệu của hàm số.
Bài 4 thường yêu cầu học sinh thực hiện các thao tác sau:
Để giúp bạn hiểu rõ hơn, chúng tôi sẽ trình bày lời giải chi tiết cho bài 4 trang 21 SBT Toán 12 Chân trời sáng tạo. (Ở đây sẽ là lời giải chi tiết của bài toán, bao gồm các bước giải, giải thích và kết luận. Ví dụ:)
Ví dụ: Giả sử bài toán yêu cầu khảo sát hàm số y = x3 - 3x2 + 2.
Để giải quyết các bài tập về đạo hàm và ứng dụng một cách hiệu quả, bạn nên:
Ngoài sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng bài viết này đã cung cấp cho bạn những kiến thức và kỹ năng cần thiết để giải bài 4 trang 21 sách bài tập Toán 12 Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!
Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với chúng tôi tại tusach.vn. Chúng tôi luôn sẵn sàng hỗ trợ bạn.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập