Tusach.vn cung cấp lời giải chi tiết, dễ hiểu bài 9 trang 22 sách bài tập Toán 12 Chân trời sáng tạo. Bài giải được các giáo viên có kinh nghiệm biên soạn, đảm bảo tính chính xác và giúp học sinh nắm vững kiến thức.
Chúng tôi luôn cập nhật nhanh chóng và đầy đủ các bài giải SBT Toán 12 Chân trời sáng tạo, hỗ trợ tối đa cho quá trình học tập của bạn.
Mặt cắt ngang của lòng máng dẫn nước là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 15 (phần được tô màu xám). Tính diện tích của mặt cắt ngang đó.
Đề bài
Mặt cắt ngang của lòng máng dẫn nước là hình phẳng giới hạn bởi một parabol và đường thẳng nằm ngang như Hình 15 (phần được tô màu xám). Tính diện tích của mặt cắt ngang đó.

Phương pháp giải - Xem chi tiết
Gắn parabol vào hệ trục toạ độ \(Oxy\), sau đó sử dụng công thức: Tính diện tích hình phẳng giới hạn bởi đồ thị của hàm số \(y = f\left( x \right)\), trục hoành và hai đường thẳng \(x = a,x = b\) là: \(S = \int\limits_a^b {\left| {f\left( x \right)} \right|dx} \).
Lời giải chi tiết

Chọn hệ trục toạ độ \(Oxy\) như hình vẽ.
Giả sử parabol có dạng \(y = a{x^2} - 2\left( {a > 0} \right)\).
Theo giả thiết ta có: \(y\left( 1 \right) = 0 \Leftrightarrow a{.1^2} - 2 = 0 \Leftrightarrow a = 2\).
Vậy phương trình đường parabol là \(y = 2{x^2} - 2\).
Diện tích của mặt cắt ngang là:
\(S = \int\limits_{ - 1}^1 {\left| {2{{\rm{x}}^2} - 2} \right|dx} = \int\limits_{ - 1}^1 {\left( { - 2{{\rm{x}}^2} + 2} \right)dx} = \left. {\left( { - \frac{{2{{\rm{x}}^3}}}{3} + 2x} \right)} \right|_{ - 1}^1 = \frac{8}{3}\left( {{m^2}} \right)\)
Bài 9 trang 22 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập chương 1: Giới hạn. Đây là một bài tập quan trọng giúp học sinh củng cố kiến thức về giới hạn hàm số, giới hạn dãy số và ứng dụng của giới hạn trong việc tính đạo hàm.
Bài tập 9 thường bao gồm các dạng bài sau:
Để giải bài 9 trang 22 SBT Toán 12 Chân trời sáng tạo một cách hiệu quả, bạn cần nắm vững các kiến thức sau:
Dưới đây là ví dụ về lời giải chi tiết một dạng bài tập thường gặp trong bài 9:
Lời giải:
Ta có:
\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{(x - 2)(x + 2)}{x - 2} = \lim_{x \to 2} (x + 2) = 2 + 2 = 4
Tusach.vn không chỉ cung cấp lời giải chi tiết bài 9 trang 22 SBT Toán 12 Chân trời sáng tạo mà còn cung cấp đầy đủ các bài giải khác trong sách bài tập Toán 12 Chân trời sáng tạo. Chúng tôi cam kết mang đến cho bạn những tài liệu học tập chất lượng, giúp bạn học tập hiệu quả và đạt kết quả cao trong môn Toán.
Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Chương | Bài | Nội dung |
|---|---|---|
| 1 | 9 | Giới hạn hàm số |
| 2 | ... | Đạo hàm |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập