Chào mừng các em học sinh đến với lời giải chi tiết bài 2 trang 109 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải dễ hiểu và các lưu ý quan trọng để giúp các em hiểu sâu hơn về nội dung bài học.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.
Người ta đo độ ẩm không khí lúc 12 giờ trưa mỗi ngày tại một địa điểm trong tháng 4. Kết quả các lần đo được biểu diễn ở biểu đồ tần số tương đối ghép nhóm dưới đây. a) Hãy lập bảng tần số ghép nhóm cho dữ liệu ở biểu đồ trên. b) Hãy tính các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm trên. (Làm tròn kết quả đến hàng phần nghìn.)
Đề bài
Người ta đo độ ẩm không khí lúc 12 giờ trưa mỗi ngày tại một địa điểm trong tháng 4. Kết quả các lần đo được biểu diễn ở biểu đồ tần số tương đối ghép nhóm dưới đây.

a) Hãy lập bảng tần số ghép nhóm cho dữ liệu ở biểu đồ trên.
b) Hãy tính các số đặc trưng đo mức độ phân tán của mẫu số liệu ghép nhóm trên. (Làm tròn kết quả đến hàng phần nghìn.)
Phương pháp giải - Xem chi tiết
‒ Sử dụng công thức tính khoảng biến thiên của mẫu số liệu ghép nhóm: \(R = {a_{m + 1}} - {a_1}\).
‒ Sử dụng công thức tính các tứ phân vị của mẫu số liệu ghép nhóm:
Tứ phân vị thứ \(k\) được xác định như sau: \({Q_k} = {u_m} + \frac{{\frac{{kn}}{4} - C}}{{{n_m}}}\left( {{u_{m + 1}} - {u_m}} \right)\)
trong đó:
• \(n = {n_1} + {n_2} + ... + {n_k}\) là cỡ mẫu;
• \(\left[ {{u_m};{u_{m + 1}}} \right)\) là nhóm chứa tứ phân vị thứ \(k\);
• \({n_m}\) là tần số của nhóm chứa tứ phân vị thứ \(k\);
• \(C = {n_1} + {n_2} + ... + {n_{m - 1}}\).
‒ Sử dụng công thức tính khoảng tứ phân vị của mẫu số liệu ghép nhóm: \(\Delta Q = {Q_3} - {Q_1}\).
‒ Sử dụng công thức tính phương sai của mẫu số liệu ghép nhóm:
\(\begin{array}{l}{S^2} = \frac{1}{n}\left[ {{n_1}{{\left( {{c_1} - \overline x } \right)}^2} + {n_2}{{\left( {{c_2} - \overline x } \right)}^2} + ... + {n_k}{{\left( {{c_k} - \overline x } \right)}^2}} \right]\\ & = \frac{1}{n}\left[ {{n_1}c_1^2 + {n_2}c_2^2 + ... + {n_k}c_k^2} \right] - {\overline x ^2}\end{array}\)
‒ Sử dụng công thức tính độ lệch chuẩn của mẫu số liệu ghép nhóm: \(S = \sqrt {{S^2}} \).
Lời giải chi tiết
a) Ta có bảng tần số ghép nhóm:

b) Khoảng biến thiên của mẫu số liệu trên là: \(R = 80 - 60 = 30\) (%).
Gọi \({x_1};{x_2};...;{x_{30}}\) là mẫu số liệu gốc theo thứ tự không giảm.
Tứ phân vị thứ nhất của mẫu số liệu gốc là \({x_8} \in \left[ {64;68} \right)\). Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:
\({Q_1} = 64 + \frac{{\frac{{1.30}}{4} - 6}}{6}\left( {68 - 64} \right) = 65\)
Tứ phân vị thứ ba của mẫu số liệu gốc là \({x_{23}} \in \left[ {72;76} \right)\). Do đó tứ phân vị thứ ba của mẫu số liệu ghép nhóm là:
\({Q_3} = 72 + \frac{{\frac{{3.30}}{4} - \left( {6 + 6 + 9} \right)}}{6}\left( {68 - 64} \right) = 73\)
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là:
\(\Delta Q = {Q_3} - {Q_1} = 73 - 65 = 8\) (%).
Ta có bảng sau:

Cỡ mẫu \(n = 30\)
Số trung bình của mẫu số liệu ghép nhóm là:
\(\overline x = \frac{{6.62 + 6.66 + 9.70 + 6.74 + 3.78}}{{30}} = 69,2\)
Phương sai của mẫu số liệu ghép nhóm đó là:
\({S^2} = \frac{1}{{30}}\left( {{{6.62}^2} + {{6.66}^2} + {{9.70}^2} + {{6.74}^2} + {{3.78}^2}} \right) - {69,2^2} = 24,96\)
Độ lệch chuẩn của mẫu số liệu ghép nhóm là: \(S = \sqrt {24,96} \approx 4,996\).
Bài 2 trang 109 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào chủ đề về Đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vectơ chỉ phương, vectơ pháp tuyến, phương trình đường thẳng và mặt phẳng để giải quyết các bài toán liên quan đến vị trí tương đối giữa đường thẳng và mặt phẳng, khoảng cách từ điểm đến mặt phẳng, và các bài toán ứng dụng khác.
Để giải bài 2 trang 109 sách bài tập Toán 12 Chân trời sáng tạo một cách hiệu quả, các em cần nắm vững các kiến thức sau:
Dưới đây là ví dụ minh họa cách giải một bài tập thường gặp trong bài 2 trang 109:
Bài toán: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa đường thẳng d và mặt phẳng (P).
Giải:
Vectơ chỉ phương của đường thẳng d là a = (1, -1, 2). Vectơ pháp tuyến của mặt phẳng (P) là n = (2, -1, 1).
Ta có a.n = 1*2 + (-1)*(-1) + 2*1 = 2 + 1 + 2 = 5 ≠ 0. Do đó, đường thẳng d và mặt phẳng (P) cắt nhau.
Tusach.vn cung cấp đầy đủ lời giải chi tiết, dễ hiểu cho tất cả các bài tập trong sách bài tập Toán 12 Chân trời sáng tạo. Ngoài ra, chúng tôi còn cung cấp các tài liệu học tập bổ trợ, bài kiểm tra và các video hướng dẫn để giúp các em học tập hiệu quả hơn. Hãy truy cập Tusach.vn ngay hôm nay để khám phá và tận hưởng những lợi ích tuyệt vời mà chúng tôi mang lại!
Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập