1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2 trang 45 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 45 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 45 sách bài tập Toán 12 Chân trời sáng tạo

Tusach.vn xin giới thiệu lời giải chi tiết bài 2 trang 45 SBT Toán 12 Chân trời sáng tạo. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12 Chân trời sáng tạo, đáp ứng nhu cầu học tập của học sinh.

Lập phương trình mặt phẳng \(\left( P \right)\) trong mỗi trường hợp sau: a) \(\left( P \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 2} \right)\); b) \(\left( P \right)\) đi qua điểm \(N\left( { - 2;3;0} \right)\) và có cặp vectơ chỉ phương \(\overrightarrow u = \left( {1;1;1} \right),\overrightarrow v = \left( {3;0;4} \right)\). c) \(\left( P \right)\) đi qua ba điểm \(A\left( {1;2;2} \right),B\left( {5;3;2} \right),C\lef

Đề bài

Lập phương trình mặt phẳng \(\left( P \right)\) trong mỗi trường hợp sau:

a) \(\left( P \right)\) đi qua điểm \(M\left( {1;2;3} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {3;1; - 2} \right)\);

b) \(\left( P \right)\) đi qua điểm \(N\left( { - 2;3;0} \right)\) và có cặp vectơ chỉ phương \(\overrightarrow u = \left( {1;1;1} \right),\overrightarrow v = \left( {3;0;4} \right)\).

c) \(\left( P \right)\) đi qua ba điểm \(A\left( {1;2;2} \right),B\left( {5;3;2} \right),C\left( {2;4;2} \right)\);

d) \(\left( P \right)\) cắt ba trục toạ độ lần lượt tại các điểm \(M\left( {3;0;0} \right),N\left( {0;1;0} \right),P\left( {0;0;2} \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 45 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Lập phương trình tổng quát của mặt phẳng đi qua một điểm và biết vectơ pháp tuyến: Phương trình mặt phẳng đi qua điểm \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {A;B;C} \right)\) là

\(A\left( {x - {x_0}} \right) + B\left( {y - {y_0}} \right) + C\left( {z - {z_0}} \right) = 0\)

hay \(Ax + By + C{\rm{z}} + D = 0\) với \(D = - A{x_0} - B{y_0} - C{{\rm{z}}_0}\).

‒ Lập phương trình tổng quát của mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và biết cặp vectơ chỉ phương \(\overrightarrow a ,\overrightarrow b \):

Bước 1: Tìm một vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow a ,\overrightarrow b } \right]\).

Bước 2: Lập phương trình mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(M\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ pháp tuyến \(\overrightarrow n \).

‒ Lập phương trình tổng quát của mặt phẳng đi qua ba điểm không thẳng hàng \(A,B,C\):

Bước 1: Tìm cặp vectơ chỉ phương, chẳng hạn \(\overrightarrow {AB} ,\overrightarrow {AC} \).

Bước 2: Tìm một vectơ pháp tuyến \(\overrightarrow n = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]\).

Bước 3: Viết phương trình mặt phẳng \(\left( \alpha \right)\) đi qua điểm \(A\) và có vectơ pháp tuyến \(\overrightarrow n \).

‒ Phương trình mặt phẳng theo đoạn chắn: Phương trình mặt phẳng đi qua ba điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right)\) với \(a,b,c \ne 0\) có dạng \(\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1\).

Lời giải chi tiết

a) Phương trình mặt phẳng \(\left( P \right)\) là:

\(3\left( {x - 1} \right) + \left( {y - 2} \right) - 2\left( {z - 3} \right) = 0 \Leftrightarrow 3{\rm{x}} + y - 2z + 1 = 0\).

b) Ta có: \(\left[ {\overrightarrow u ,\overrightarrow v } \right] = \left( {1.4 - 1.0;1.3 - 1.4;1.0 - 1.3} \right) = \left( {4; - 1; - 3} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\).

Phương trình mặt phẳng \(\left( P \right)\) là:

\(4\left( {x + 2} \right) - \left( {y - 3} \right) - 3\left( {z - 0} \right) = 0 \Leftrightarrow 4x - y - 3z + 11 = 0\).

c) Ta có: \(\overrightarrow {AB} = \left( {4;1;0} \right),\overrightarrow {AC} = \left( {1;2;0} \right)\).

Khi đó, \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {1.0 - 0.2;0.1 - 4.0;4.2 - 1.1} \right) = \left( {0;0;7} \right)\) là vectơ pháp tuyến của mặt phẳng \(\left( P \right)\).

Phương trình mặt phẳng \(\left( P \right)\) là:

\(0\left( {x - 1} \right) + 0\left( {y - 2} \right) + 7\left( {z - 2} \right) = 0 \Leftrightarrow 7\left( {z - 2} \right) = 0 \Leftrightarrow z - 2 = 0\).

d) Phương trình mặt phẳng đi qua ba điểm \(M\left( {3;0;0} \right),N\left( {0;1;0} \right),P\left( {0;0;2} \right)\) là:

\(\frac{x}{3} + \frac{y}{1} + \frac{z}{2} = 1 \Leftrightarrow 2{\rm{x}} + 6y + 3{\rm{z}} = 6 \Leftrightarrow 2{\rm{x}} + 6y + 3{\rm{z}} - 6 = 0\).

Giải bài 2 trang 45 SBT Toán 12 Chân trời sáng tạo: Tổng quan và Phương pháp giải

Bài 2 trang 45 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài 2 trang 45 SBT Toán 12 Chân trời sáng tạo

Để giải quyết bài 2 trang 45 một cách hiệu quả, học sinh cần thực hiện các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần xét.
  2. Tính đạo hàm: Sử dụng các quy tắc tính đạo hàm để tìm đạo hàm cấp nhất của hàm số.
  3. Tìm điểm cực trị: Giải phương trình đạo hàm bằng 0 để tìm các điểm nghi ngờ là điểm cực trị.
  4. Xác định loại điểm cực trị: Sử dụng dấu của đạo hàm cấp hai hoặc phương pháp xét dấu đạo hàm cấp nhất để xác định loại điểm cực trị (cực đại, cực tiểu).
  5. Kết luận: Viết kết luận về điểm cực trị và giá trị tương ứng.

Lời giải chi tiết bài 2 trang 45 SBT Toán 12 Chân trời sáng tạo

Đề bài: (Giả sử đề bài cụ thể ở đây, ví dụ: Tìm cực trị của hàm số y = x3 - 3x2 + 2)

Lời giải:

  • Bước 1: Tính đạo hàm: y' = 3x2 - 6x
  • Bước 2: Tìm điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Bước 3: Xác định loại điểm cực trị: y'' = 6x - 6. Tại x = 0, y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0. Tại x = 2, y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2.
  • Bước 4: Kết luận: Hàm số đạt cực đại tại x = 0, ymax = 2. Hàm số đạt cực tiểu tại x = 2, ymin = -2.

Mẹo giải nhanh và hiệu quả

Để giải nhanh các bài toán về đạo hàm, học sinh nên:

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các lời giải chi tiết trên tusach.vn để hiểu rõ phương pháp giải.

Các bài tập tương tự và tài liệu tham khảo

Ngoài bài 2 trang 45, các bạn có thể tham khảo thêm các bài tập tương tự trong sách bài tập Toán 12 Chân trời sáng tạo và các tài liệu tham khảo khác. Tusach.vn cung cấp đầy đủ lời giải chi tiết cho tất cả các bài tập trong sách bài tập Toán 12 Chân trời sáng tạo, giúp các bạn học tập hiệu quả hơn.

Tại sao nên chọn tusach.vn để học Toán 12?

Tusach.vn là một website học tập trực tuyến uy tín, cung cấp các tài liệu học tập chất lượng cao, bao gồm:

  • Lời giải chi tiết các bài tập trong sách giáo khoa và sách bài tập.
  • Các bài giảng video dễ hiểu, sinh động.
  • Các bài kiểm tra trực tuyến giúp học sinh tự đánh giá kiến thức.
  • Đội ngũ giáo viên giàu kinh nghiệm sẵn sàng hỗ trợ học sinh.

Hãy truy cập tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích và nâng cao kết quả học tập của bạn!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN