1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 2 trang 10 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 10 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 2 trang 10 sách bài tập Toán 12 Chân trời sáng tạo

Tusach.vn xin giới thiệu lời giải chi tiết bài 2 trang 10 SBT Toán 12 Chân trời sáng tạo. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải Toán 12 Chân trời sáng tạo, đáp ứng nhu cầu học tập của học sinh.

Xét tính đơn điệu và tìm cực trị của các hàm số: a) (y = - {x^3} - 3{x^2} + 24x - 1); b) (y = {x^3} - 8{x^2} + 5x + 2); c) (y = {x^3} + 2{x^2} + 3x + 1); d) (y = - 3{x^3} + 3{x^2} - x + 2).

Đề bài

Xét tính đơn điệu và tìm cực trị của các hàm số:

a) \(y = - {x^3} - 3{x^2} + 24x - 1\);

b) \(y = {x^3} - 8{x^2} + 5x + 2\);

c) \(y = {x^3} + 2{x^2} + 3x + 1\);

d) \(y = - 3{x^3} + 3{x^2} - x + 2\).

Phương pháp giải - Xem chi tiếtGiải bài 2 trang 10 sách bài tập toán 12 - Chân trời sáng tạo 1

Các bước để xét tính đơn điệu và tìm cực trị của hàm số \(f\left( x \right)\):

Bước 1. Tìm tập xác định \(D\) của hàm số.

Bước 2. Tính đạo hàm \(f'\left( x \right)\) của hàm số. Tìm các điểm \({x_1},{x_2},...,{x_n} \in D\) mà tại đó đạo hàm \(f'\left( x \right)\) bằng 0 hoặc không tồn tại.

Bước 3. Sắp xếp các điểm \({x_1},{x_2},...,{x_n}\) theo thứ tự tăng dần, xét dấu \(f'\left( x \right)\) và lập bảng biến thiên.

Bước 4. Nêu kết luận về các khoảng đồng biến, nghịch biến, cực trị của hàm số.

Lời giải chi tiết

a) Xét hàm số \(y = - {x^3} - 3{x^2} + 24x - 1\).

Tập xác định: \(D = \mathbb{R}\).

Ta có \(y' = - 3{x^2} - 6x + 24;y' = 0 \Leftrightarrow x = - 4\) hoặc \(x = 2\).

Bảng biến thiên:

Giải bài 2 trang 10 sách bài tập toán 12 - Chân trời sáng tạo 2

Hàm số đồng biến trên khoảng \(\left( { - 4;2} \right)\), nghịch biến trên các khoảng \(\left( { - \infty ; - 4} \right)\) và \(\left( {2; + \infty } \right)\).

Hàm số đạt cực đại tại $x=2,{{y}_{CĐ}}=27$; hàm số đạt cực tiểu tại \(x = - 4,{y_{CT}} = - 81\).

b) Xét hàm số \(y = {x^3} - 8{x^2} + 5x + 2\).

Tập xác định: \(D = \mathbb{R}\).

Ta có \(y' = 3{x^2} - 16x + 5;y' = 0 \Leftrightarrow x = 5\) hoặc \({\rm{x}} = \frac{1}{3}\).

Bảng biến thiên:

Giải bài 2 trang 10 sách bài tập toán 12 - Chân trời sáng tạo 3

Hàm số đồng biến trên các khoảng \(\left( { - \infty ;\frac{1}{3}} \right)\) và \(\left( {5; + \infty } \right)\), nghịch biến trên khoảng \(\left( {\frac{1}{3};5} \right)\).

Hàm số đạt cực đại tại $x=\frac{1}{3},{{y}_{CĐ}}=\frac{76}{27}$; hàm số đạt cực tiểu tại \(x = 5,{y_{CT}} = - 48\).

c) Xét hàm số \(y = {x^3} + 2{x^2} + 3x + 1\).

Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y' = 3{x^2} + 4x + 3 = 3{\left( {x + \frac{2}{3}} \right)^2} + \frac{5}{3} > 0,\forall x \in \mathbb{R}\)

Bảng biến thiên:

Giải bài 2 trang 10 sách bài tập toán 12 - Chân trời sáng tạo 4

Hàm số đồng biến trên \(\mathbb{R}\).

Hàm số không có cực trị.

d) Xét hàm số \(y = - 3{x^3} + 3{x^2} - x + 2\).

Tập xác định: \(D = \mathbb{R}\).

Ta có: \(y' = - 9{x^2} + 6x - 1 = - {\left( {3x - 1} \right)^2};y' = 0 \Leftrightarrow x = \frac{1}{3}\).

Bảng biến thiên:

Giải bài 2 trang 10 sách bài tập toán 12 - Chân trời sáng tạo 5

Hàm số nghịch biến trên \(\mathbb{R}\). Hàm số không có cực trị.

Giải bài 2 trang 10 SBT Toán 12 Chân trời sáng tạo: Tổng quan và Phương pháp giải

Bài 2 trang 10 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, kết hợp với các kỹ năng biến đổi đại số để tìm ra kết quả chính xác.

Nội dung chi tiết bài 2 trang 10 SBT Toán 12 Chân trời sáng tạo

Bài 2 thường bao gồm một số câu hỏi nhỏ, yêu cầu học sinh:

  • Tính đạo hàm của các hàm số cho trước.
  • Tìm đạo hàm cấp hai của các hàm số.
  • Xác định các điểm cực trị của hàm số.
  • Khảo sát sự biến thiên của hàm số.

Lời giải chi tiết bài 2 trang 10 SBT Toán 12 Chân trời sáng tạo

Dưới đây là lời giải chi tiết cho từng câu hỏi của bài 2 trang 10 SBT Toán 12 Chân trời sáng tạo:

Câu a: Tính đạo hàm của hàm số f(x) = x3 - 2x2 + 5x - 1

Lời giải:

f'(x) = 3x2 - 4x + 5

Câu b: Tìm đạo hàm cấp hai của hàm số g(x) = sin(2x)

Lời giải:

g'(x) = 2cos(2x)

g''(x) = -4sin(2x)

Câu c: Xác định các điểm cực trị của hàm số h(x) = x4 - 4x2 + 3

Lời giải:

h'(x) = 4x3 - 8x = 4x(x2 - 2)

Giải phương trình h'(x) = 0, ta được x = 0, x = √2, x = -√2

Xét dấu h'(x) để xác định các điểm cực trị.

Kết luận: Hàm số có điểm cực đại tại x = -√2 và điểm cực tiểu tại x = √2.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các quy tắc tính đạo hàm của các hàm số cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm sách giáo khoa, sách bài tập, đề thi và lời giải chi tiết. Chúng tôi cam kết cung cấp cho bạn những thông tin chính xác, cập nhật và hữu ích nhất để giúp bạn học tập tốt môn Toán 12.

Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!

ChươngNội dung chính
1Đạo hàm
2Ứng dụng của đạo hàm

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN