Tusach.vn cung cấp lời giải chi tiết và dễ hiểu bài 1 trang 31 sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ giúp bạn nắm vững kiến thức và kỹ năng giải toán, chuẩn bị tốt cho các kỳ thi sắp tới.
Chúng tôi luôn cập nhật đáp án nhanh nhất và chính xác nhất, đồng thời cung cấp các phương pháp giải bài tập hiệu quả.
Khảo sát và vẽ đồ thị của các hàm số sau: a) (y = xleft( {{x^2} - 4x} right)); b) (y = - {x^3} + 3{x^2} - 2).
Đề bài
Khảo sát và vẽ đồ thị của các hàm số sau:
a) \(y = x\left( {{x^2} - 4x} \right)\);
b) \(y = - {x^3} + 3{x^2} - 2\).
Phương pháp giải - Xem chi tiết
Sơ đồ khảo sát hàm số:
Bước 1. Tìm tập xác định của hàm số.
Bước 2. Xét sự biến thiên của hàm số
‒ Tìm đạo hàm \(y'\), xét dấu \(y'\), xác định khoảng đơn điệu, cực trị (nếu có) của hàm số.
‒ Tìm giới hạn tại vô cực, giới hạn vô cực của hàm số và tìm các đường tiệm cận của đồ thị hàm số (nếu có).
‒ Lập bảng biến thiên của hàm số.
Bước 3. Vẽ đồ thị hàm số
‒ Xác định các điểm cực trị (nếu có), giao điểm của đồ thị với các trục toạ độ (nếu có và dễ tìm),…
‒ Vẽ các đường tiệm cận của đồ thị hàm số (nếu có).
‒ Vẽ đồ thị hàm số.
Lời giải chi tiết
a) \(y = x\left( {{x^2} - 4x} \right) = {x^3} - 4{x^2}\)
1. Tập xác định: \(\mathbb{R}\).
2. Sự biến thiên:
• Chiều biến thiên:
Đạo hàm \(y' = 3{{\rm{x}}^2} - 8{\rm{x}};y' = 0 \Leftrightarrow x = 0\) hoặc \({\rm{x}} = \frac{8}{3}\).
Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {\frac{8}{3}; + \infty } \right)\), \(y' > 0\) nên hàm số đồng biến trên mỗi khoảng đó.
Trên khoảng \(\left( {0;\frac{8}{3}} \right)\), \(y' < 0\) nên hàm số nghịch biến trên khoảng đó.
• Cực trị:
Hàm số đạt cực đại tại \(x = 0\) và ${{y}_{CĐ}}=0$.
Hàm số đạt cực tiểu tại \(x = \frac{8}{3}\) và \({y_{CT}} = - \frac{{256}}{{27}}\).
• Các giới hạn tại vô cực:
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } {x^3}\left( {1 - \frac{4}{x}} \right) = - \infty ;\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {x^3}\left( {1 - \frac{4}{x}} \right) = + \infty \).
• Bảng biến thiên:

3. Đồ thị
Khi \(x = 0\) thì \(y = 0\) nên \(\left( {0;0} \right)\) là giao điểm của đồ thị với trục \(Oy\).
Ta có \(y = 0 \Leftrightarrow {x^3} - 4{{\rm{x}}^2} = 0 \Leftrightarrow x = 0\) hoặc \({\rm{x}} = 4\).
Vậy đồ thị hàm số giao với trục \(Ox\) tại hai điểm \(\left( {0;0} \right)\) và \(\left( {4;0} \right)\).
Điểm \(\left( {0;0} \right)\) là điểm cực đại và điểm \(\left( {\frac{8}{3}; - \frac{{256}}{{27}}} \right)\) là điểm cực tiểu của đồ thị hàm số.
Vậy đồ thị hàm số được biểu diễn như hình vẽ bên.
Đồ thị của hàm số có tâm đối xứng là điểm \(I\left( {\frac{4}{3}; - \frac{{128}}{{27}}} \right)\).

b) \(y = - {x^3} + 3{x^2} - 2\)
1. Tập xác định: \(\mathbb{R}\).
2. Sự biến thiên:
• Chiều biến thiên:
Đạo hàm \(y' = - 3{{\rm{x}}^2} + 6{\rm{x}};y' = 0 \Leftrightarrow x = 0\) hoặc \({\rm{x}} = 2\).
Trên khoảng \(\left( {0;2} \right)\), \(y' > 0\) nên hàm số đồng biến trên khoảng đó.
Trên các khoảng \(\left( { - \infty ;0} \right)\) và \(\left( {2; + \infty } \right)\), \(y' < 0\) nên hàm số nghịch biến trên mỗi khoảng đó.
• Cực trị:
Hàm số đạt cực đại tại \(x = 2\) và ${{y}_{CĐ}}=4$.
Hàm số đạt cực tiểu tại \(x = 0\) và \({y_{CT}} = 0\).
• Các giới hạn tại vô cực:
\(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } {x^3}\left( { - 1 + \frac{3}{x} - \frac{2}{{{x^3}}}} \right) = + \infty ;\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } {x^3}\left( { - 1 + \frac{3}{x} - \frac{2}{{{x^3}}}} \right) = - \infty \).
• Bảng biến thiên:

3. Đồ thị
Khi \(x = 0\) thì \(y = 0\) nên \(\left( {0;0} \right)\) là giao điểm của đồ thị với trục \(Oy\).
Ta có \(y = 0 \Leftrightarrow - {x^3} + 3{{\rm{x}}^2} = 0 \Leftrightarrow x = 0\) hoặc \({\rm{x}} = 3\).
Vậy đồ thị hàm số giao với trục \(Ox\) tại hai điểm \(\left( {0;0} \right)\) và \(\left( {3;0} \right)\).
Điểm \(\left( {2;4} \right)\) là điểm cực đại và điểm \(\left( {0;0} \right)\) là điểm cực tiểu của đồ thị hàm số.
Vậy đồ thị hàm số được biểu diễn như hình vẽ bên.
Đồ thị của hàm số có tâm đối xứng là điểm \(I\left( {2;2} \right)\).

Bài 1 trang 31 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Việc nắm vững kiến thức này là vô cùng quan trọng để giải quyết các bài toán liên quan đến cực trị, giá trị lớn nhất, giá trị nhỏ nhất của hàm số.
Bài 1 thường yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài 1 trang 31 SBT Toán 12 Chân trời sáng tạo, bạn cần thực hiện theo các bước sau:
Giả sử hàm số f(x) = x3 - 3x2 + 2. Ta thực hiện các bước sau:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | NB | ĐC | TC |
Từ bảng biến thiên, ta thấy hàm số đồng biến trên khoảng (-∞, 0) và (2, +∞), nghịch biến trên khoảng (0, 2). Hàm số đạt cực đại tại x = 0 và cực tiểu tại x = 2.
Để giải nhanh các bài toán về đạo hàm và ứng dụng của đạo hàm, bạn nên:
Tusach.vn luôn đồng hành cùng bạn trong quá trình học tập môn Toán 12. Chúng tôi cung cấp đầy đủ các tài liệu học tập, bài giải chi tiết và các mẹo giải nhanh để giúp bạn đạt kết quả tốt nhất. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập