Chào mừng các em học sinh đến với lời giải chi tiết bài 9 trang 34 Sách bài tập Toán 12 Chân trời sáng tạo. Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để giúp các em hiểu rõ hơn về nội dung bài học.
Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.
Cho hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}}\). A. Đồ thị hàm số có một tiệm cận xiên là \(y = x - 3\). B. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 3\). C. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 1\). D. Đồ thị hàm số không có tiệm cận xiên.
Đề bài
Cho hàm số \(y = \frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}}\).
A. Đồ thị hàm số có một tiệm cận xiên là \(y = x - 3\).
B. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 3\).
C. Đồ thị hàm số có một tiệm cận xiên là \(y = x + 1\).
D. Đồ thị hàm số không có tiệm cận xiên.
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận xiên \(y = ax + b\left( {a \ne 0} \right)\):
\(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - ax} \right]\) hoặc
\(a = \mathop {\lim }\limits_{x \to - \infty } \frac{{f\left( x \right)}}{x}\) và \(b = \mathop {\lim }\limits_{x \to - \infty } \left[ {f\left( x \right) - ax} \right]\)
Lời giải chi tiết
Ta có: \(a = \mathop {\lim }\limits_{x \to + \infty } \frac{{f\left( x \right)}}{x} = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2{\rm{x}} + 6}}{{x\left( {x + 1} \right)}} = 1\) và
\(b = \mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \left[ {\frac{{{x^2} - 2{\rm{x}} + 6}}{{x + 1}} - x} \right] = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 3{\rm{x}} + 6}}{{x + 1}} = - 3\)
Vậy đường thẳng \(y = x - 3\) là tiệm cận xiên của đồ thị hàm số đã cho.
Chọn A.
Bài 9 trang 34 Sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các công thức và quy tắc đạo hàm đã học để giải quyết các bài toán cụ thể. Việc nắm vững kiến thức nền tảng và luyện tập thường xuyên là chìa khóa để giải quyết thành công bài tập này.
Bài tập 9 trang 34 thường bao gồm các dạng bài sau:
Để giúp các em hiểu rõ hơn, chúng ta sẽ đi vào giải chi tiết từng phần của bài tập 9 trang 34. (Ở đây sẽ là lời giải chi tiết cho từng câu hỏi trong bài tập 9, trang 34. Ví dụ:)
Lời giải:
Áp dụng quy tắc đạo hàm của tổng và lũy thừa, ta có:
f'(x) = 3x2 + 4x - 5
Lời giải:
Sử dụng quy tắc đạo hàm của hàm hợp, ta có:
y' = cos(2x) * 2 = 2cos(2x)
Để giải bài tập đạo hàm một cách hiệu quả, các em có thể tham khảo những mẹo sau:
Ngoài sách bài tập, các em có thể tham khảo thêm các tài liệu sau để học tốt môn Toán 12:
Hy vọng với lời giải chi tiết và những hướng dẫn trên, các em sẽ tự tin hơn khi giải bài 9 trang 34 Sách bài tập Toán 12 Chân trời sáng tạo. Chúc các em học tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập