1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5 trang 46 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 46 sách bài tập toán 12 - Chân trời sáng tạo

Giải bài 5 trang 46 sách bài tập Toán 12 Chân trời sáng tạo

Tusach.vn xin giới thiệu lời giải chi tiết bài 5 trang 46 SBT Toán 12 Chân trời sáng tạo. Bài giải được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải Toán 12 mới nhất.

Cho hai mặt phẳng \(\left( P \right):2x + y + 2z + 12 = 0,\left( Q \right):4x + 2y + 4z - 6 = 0\). a) Chứng minh \(\left( P \right)\parallel \left( Q \right)\). b) Tính khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

Đề bài

Cho hai mặt phẳng \(\left( P \right):2x + y + 2z + 12 = 0,\left( Q \right):4x + 2y + 4z - 6 = 0\).

a) Chứng minh \(\left( P \right)\parallel \left( Q \right)\).

b) Tính khoảng cách giữa hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\).

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 46 sách bài tập toán 12 - Chân trời sáng tạo 1

‒ Cho hai mặt phẳng \(\left( {{\alpha _1}} \right):{A_1}x + {B_1}y + {C_1}{\rm{z}} + {D_1} = 0\) và \(\left( {{\alpha _2}} \right):{A_2}x + {B_2}y + {C_2}{\rm{z}} + {D_2} = 0\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right),\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\).

Khi đó \(\left( {{\alpha _1}} \right)\parallel \left( {{\alpha _2}} \right) \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {{n_1}} = k\overrightarrow {{n_2}} \\{D_1} \ne k{{\rm{D}}_2}\end{array} \right.\left( {k \in \mathbb{R}} \right)\)

‒ Để tính khoảng cách giữa hai mặt phẳng song song ta đưa về tính khoảng cách từ một điểm trên mặt phẳng này đến mặt phẳng còn lại.

Lời giải chi tiết

a) Mặt phẳng \(\left( P \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_1}} = \left( {2;1;2} \right)\), mặt phẳng \(\left( Q \right)\) có vectơ pháp tuyến \(\overrightarrow {{n_2}} = \left( {4;2;4} \right)\).

Ta có: \(\overrightarrow {{n_1}} = \frac{1}{2}\overrightarrow {{n_2}} \) và \(12 \ne \frac{1}{2}.\left( { - 6} \right)\) nên \(\left( P \right)\parallel \left( Q \right)\).

b) Lấy điểm \(A\left( {0;0; - 6} \right) \in \left( P \right)\). Khi đó ta có:

\(d\left( {\left( P \right);\left( Q \right)} \right) = d\left( {A;\left( Q \right)} \right) = \frac{{\left| {4.0 + 2.0 + 4.\left( { - 6} \right) - 6} \right|}}{{\sqrt {{4^2} + {2^2} + {4^2}} }} = 5\).

Giải bài 5 trang 46 SBT Toán 12 Chân trời sáng tạo: Tổng quan và Phương pháp giải

Bài 5 trang 46 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài 5 trang 46 SBT Toán 12 Chân trời sáng tạo

Bài 5 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số.
  • Dạng 2: Tìm cực trị của hàm số.
  • Dạng 3: Khảo sát sự biến thiên của hàm số.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán tối ưu.

Lời giải chi tiết bài 5 trang 46 SBT Toán 12 Chân trời sáng tạo

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 5 trang 46 SBT Toán 12 Chân trời sáng tạo, chúng tôi xin trình bày lời giải chi tiết cho từng câu hỏi:

Câu a: (Ví dụ minh họa)

Cho hàm số y = x3 - 3x2 + 2. Hãy tính đạo hàm y' của hàm số.

Lời giải:

Áp dụng quy tắc tính đạo hàm của tổng và tích, ta có:

y' = 3x2 - 6x

Câu b: (Ví dụ minh họa)

Tìm cực trị của hàm số y = x3 - 3x2 + 2.

Lời giải:

  1. Tính đạo hàm y' = 3x2 - 6x.
  2. Giải phương trình y' = 0 để tìm các điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2.
  3. Tính đạo hàm bậc hai y'' = 6x - 6.
  4. Kiểm tra dấu của y'' tại các điểm cực trị:
    • Tại x = 0, y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0. Giá trị cực đại là y = 2.
    • Tại x = 2, y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là y = -2.

Mẹo giải bài tập đạo hàm Toán 12

Để giải tốt các bài tập về đạo hàm, các em cần:

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính bỏ túi để kiểm tra lại kết quả.
  • Đọc kỹ đề bài và xác định đúng yêu cầu của bài toán.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm sách giáo khoa, sách bài tập, đề thi, và lời giải chi tiết. Chúng tôi cam kết cung cấp cho các em những tài liệu chất lượng, chính xác, và cập nhật nhất. Hãy truy cập tusach.vn để học tập và ôn luyện Toán 12 hiệu quả!

Dạng bàiPhương pháp giải
Tính đạo hàmSử dụng quy tắc tính đạo hàm của tổng, tích, thương, hàm hợp.
Tìm cực trịGiải phương trình đạo hàm bằng 0, xét dấu đạo hàm bậc hai.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN