Chào mừng bạn đến với lời giải chi tiết bài 12 trang 35 Sách bài tập Toán 12 Chân trời sáng tạo trên tusach.vn. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp bạn hiểu sâu sắc kiến thức và tự tin làm bài tập.
Chúng tôi luôn cố gắng mang đến những nội dung chất lượng, cập nhật nhanh chóng và dễ dàng tiếp cận.
Chọn đúng hoặc sai cho mỗi ý a, b, c, d. Hàm số (y = frac{{3{rm{x}} + 1}}{{{rm{x}} - 2}}) có các tiệm cận là a) (x = 2). b) ({rm{x}} = 3). c) ({rm{y}} = 2). d) ({rm{y}} = 3).
Đề bài
Chọn đúng hoặc sai cho mỗi ý a, b, c, d.
Hàm số \(y = \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}}\) có các tiệm cận là
a) \(x = 2\).
b) \({\rm{x}} = 3\).
c) \({\rm{y}} = 2\).
d) \({\rm{y}} = 3\).
Phương pháp giải - Xem chi tiết
‒ Tìm tiệm cận đứng: Tính \(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right)\) hoặc \(\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right)\), nếu một trong các giới hạn sau thoả mãn:
\(\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ - } f\left( x \right) = - \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = + \infty ;\mathop {\lim }\limits_{x \to x_0^ + } f\left( x \right) = - \infty \)
thì đường thẳng \(x = {x_0}\) là đường tiệm cận đứng.
‒ Tìm tiệm cận ngang: Nếu \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = {y_0}\) hoặc \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = {y_0}\) thì đường thẳng \(y = {y_0}\) là đường tiệm cận ngang.
Lời giải chi tiết
Tập xác định: \(D = \mathbb{R}\backslash \left\{ 2 \right\}\).
Ta có:
• \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = - \infty ;\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = + \infty \)
Vậy \(x = 2\) là tiệm cận đứng của đồ thị hàm số đã cho.
• \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to + \infty } \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = 3;\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = \mathop {\lim }\limits_{x \to - \infty } \frac{{3{\rm{x}} + 1}}{{{\rm{x}} - 2}} = 3\)
Vậy \(y = 3\) là tiệm cận ngang của đồ thị hàm số đã cho.
a) Đ.
b) S.
c) S.
d) Đ.
Bài 12 trang 35 Sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào các kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Việc nắm vững kiến thức này là vô cùng quan trọng để giải quyết các bài toán liên quan đến cực trị, khoảng đơn điệu và vẽ đồ thị hàm số.
Bài 12 thường bao gồm các dạng bài tập sau:
Dưới đây là lời giải chi tiết cho từng bài tập trong bài 12 trang 35 Sách bài tập Toán 12 Chân trời sáng tạo:
Đề bài: (Ví dụ, đề bài cụ thể của bài 12.1)
Lời giải: (Giải chi tiết bài 12.1, bao gồm các bước thực hiện, công thức sử dụng và kết luận)
Đề bài: (Ví dụ, đề bài cụ thể của bài 12.2)
Lời giải: (Giải chi tiết bài 12.2, bao gồm các bước thực hiện, công thức sử dụng và kết luận)
Để giải quyết hiệu quả các bài tập trong bài 12, bạn cần nắm vững các công thức và kiến thức sau:
Để giải bài tập Toán 12 hiệu quả, bạn nên:
Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và những kiến thức hữu ích trên, bạn đã có thể tự tin giải quyết bài 12 trang 35 Sách bài tập Toán 12 Chân trời sáng tạo. Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập