Tusach.vn xin giới thiệu lời giải chi tiết bài 5 trang 61 SBT Toán 12 Chân trời sáng tạo. Bài giải này được trình bày rõ ràng, dễ hiểu, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12 Chân trời sáng tạo.
Cho đường thẳng (d) có phương trình tham số: (left{ begin{array}{l}x = 1 + 4t\y = 6t\z = - 2 + 2tend{array} right.). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng (d)? A. (frac{{x + 1}}{4} = frac{y}{6} = frac{{z - 2}}{2}). B. (frac{{x - 5}}{2} = frac{{y - 6}}{3} = frac{z}{1}). C. (frac{{x + 1}}{2} = frac{y}{3} = frac{{z - 2}}{{ - 2}}). D. (frac{{x - 1}}{4} = frac{y}{6} = frac{{z + 2}}{2}).
Đề bài
Cho đường thẳng \(d\) có phương trình tham số: \(\left\{ \begin{array}{l}x = 1 + 4t\\y = 6t\\z = - 2 + 2t\end{array} \right.\).
Phương trình nào dưới đây là phương trình chính tắc của đường thẳng \(d\)?
A. \(\frac{{x + 1}}{4} = \frac{y}{6} = \frac{{z - 2}}{2}\).
B. \(\frac{{x - 5}}{2} = \frac{{y - 6}}{3} = \frac{z}{1}\).
C. \(\frac{{x + 1}}{2} = \frac{y}{3} = \frac{{z - 2}}{{ - 2}}\).
D. \(\frac{{x - 1}}{4} = \frac{y}{6} = \frac{{z + 2}}{2}\).
Phương pháp giải - Xem chi tiết
Phương trình chính tắc của đường thẳng \(\Delta \) đi qua \({M_0}\left( {{x_0};{y_0};{z_0}} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {a;b;c} \right)\) là: \(\frac{{x - {x_0}}}{a} = \frac{{y - {y_0}}}{b} = \frac{{z - {z_0}}}{c}\).
Lời giải chi tiết
Đường thẳng \(d\) có phương trình tham số là \(\left\{ \begin{array}{l}x = 1 + 4t\\y = 6t\\z = - 2 + 2t\end{array} \right.\) đi qua điểm \(M\left( {1;0; - 2} \right)\) và có vectơ chỉ phương \(\overrightarrow u = \left( {4;6;2} \right)\).
Phương trình chính tắc của \(d\) là: \(\frac{{x - 1}}{4} = \frac{y}{6} = \frac{{z + 2}}{2}\).
Chọn D.
Bài 5 trang 61 sách bài tập Toán 12 Chân trời sáng tạo thuộc chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng các quy tắc tính đạo hàm của các hàm số cơ bản, kết hợp với các kỹ năng biến đổi đại số để tìm ra đáp án chính xác.
Câu 1: (Ví dụ minh họa) Cho hàm số y = x3 - 2x2 + 1. Tính đạo hàm của hàm số tại x = 2.
Lời giải:
y' = 3x2 - 4x
Thay x = 2 vào y', ta được: y'(2) = 3(2)2 - 4(2) = 12 - 8 = 4
Vậy, đạo hàm của hàm số tại x = 2 là 4.
Câu 2: (Ví dụ minh họa) Tìm đạo hàm của hàm số y = sin(2x) + cos(x).
Lời giải:
y' = 2cos(2x) - sin(x)
Câu 3: (Ví dụ minh họa) Xác định hệ số góc của tiếp tuyến của đồ thị hàm số y = x2 tại điểm có hoành độ x = 1.
Lời giải:
y' = 2x
Thay x = 1 vào y', ta được: y'(1) = 2(1) = 2
Vậy, hệ số góc của tiếp tuyến tại điểm có hoành độ x = 1 là 2.
Hy vọng với lời giải chi tiết và phương pháp giải bài 5 trang 61 SBT Toán 12 Chân trời sáng tạo này, các bạn học sinh sẽ tự tin hơn trong việc ôn tập và làm bài tập Toán 12. Chúc các bạn học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập