Tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 2 trang 58, 59, 60 sách giáo khoa Toán 12 tập 1 chương trình Cánh Diều. Bài giải được trình bày rõ ràng, logic, giúp học sinh nắm vững kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 12, đáp ứng nhu cầu học tập của học sinh trên toàn quốc.
Các phép toán vecto trong không gian
Trả lời câu hỏi Hoạt động 5 trang 60 SGK Toán 12 Cánh diều
Nêu định nghĩa tích của một số thực \(k \ne 0\;\)với vecto\(\;\vec a\; \ne \vec 0\) trong mặt phẳng.
Lời giải chi tiết:
Cho số thực \(k \ne 0\) và \(vecto\;\vec a \ne \vec 0\). Tích của số k với vecto \(\vec a\) là một vecto, kí hiệu là \(k\vec a,\;\)được xác định như sau:
- Cùng hướng với vecto \(\vec a\) nếu k > 0, ngược hướng với vecto \(\vec a\) nếu k < 0.
- Có độ dài bằng \(\left| k \right|.\left| {\vec a} \right|\).
Trả lời câu hỏi Hoạt động 3 trang 59 SGK Toán 12 Cánh diều
Cho hình hộp ABCD.A’B’C’D’. Tìm liên hệ giữa \(\overrightarrow {AB} + \overrightarrow {AD} \) và \(\overrightarrow {AC} ;\;\overrightarrow {AC} + \overrightarrow {AA'} \) và \(\overrightarrow {AC'} \).

Phương pháp giải:
Áp dụng quy tắc ba điểm.
Lời giải chi tiết:
Áp dụng quy tắc ba điểm ta thấy:
\(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {BD} \) (1)
Mà từ hình vẽ ta thấy \(\overrightarrow {BD} = \overrightarrow {AC} \;\;\;\;\;\;\;\;\left( 2 \right)\)
Từ (1) (2) => \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
\(\overrightarrow {AC} + \overrightarrow {AA'} = \overrightarrow {A'C} \) (3)
Mà \(\overrightarrow {A'C} = \overrightarrow {AC'} \) (4)
Từ (3), (4) suy ra \(\overrightarrow {AC} + \overrightarrow {AA'} = \overrightarrow {AC'} \)
Trả lời câu hỏi Hoạt động 7 trang 61 SGK Toán 12 Cánh diều
Trong không gian, cho hình lập phương ABCD.A’B’C’D’ có độ dài bằng 3cm (hình 12).
a) Tính góc giữa hai vecto \(\overrightarrow {AC} ,\overrightarrow {A'D'} \).
b) Tính \(\left| {\overrightarrow {AC} } \right|,\left| {\overrightarrow {A'D'} } \right|\). Cos(\(\overrightarrow {AC} ,\overrightarrow {A'D'} \)).

Phương pháp giải:
Áp dụng quy tắc 3 điểm và vectơ trong không gian.
Lời giải chi tiết:
Ta có A’D’//AD.
Góc giữa \(\overrightarrow {AC} \;\)và\(\;\overrightarrow {A'D'} \)= \(\;\overrightarrow {AC} \) và \(\overrightarrow {AD} \).
a) Mà ABCD là hình vuông => \(\widehat {CAD} = 45^\circ \)
b) \(\overrightarrow {\left| {AC} \right|} .|\overrightarrow {A'D'|} \) = AC.AD = 3.3 = 9.
cos(\(\overrightarrow {AC} ,\overrightarrow {A'D'} \))= cos(\(\overrightarrow {AC} ,\overrightarrow {AD} )\)= \(\frac{{\overrightarrow {AC} .\overrightarrow {AD} }}{{\overrightarrow {\left| {AC} \right|} .\overrightarrow {\left| {AD} \right|} }} = \frac{{3.3}}{{3.3}} = 1\).
Trả lời câu hỏi Hoạt động 4 trang 59 SGK Toán 12 Cánh diều
Trong không gian , cho hai vecto\(\;\vec a,\vec b.\;\) Lấy một điểm M tùy ý.
a) Vẽ \(\overrightarrow {MA} = \vec a,\;\overrightarrow {MB} = \vec b\;,\overrightarrow {MC} = \overrightarrow { - b} \).
b) Tổng của hai vecto \(\vec a\;\)và \(\;\overrightarrow { - b} \) bằng vecto nào trong hình 7.

Phương pháp giải:
Sử dụng quy tắc hình bình hành.
Lời giải chi tiết:
\( \vec{a}\) + (\( - \vec{b}) =\) \(\overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MN} \) (quy tắc hình bình hành).
Trả lời câu hỏi Hoạt động 2 trang 58 SGK Toán 12 Cánh diều
Trong không gian, cho 2 vec tơ \(\vec a\) và \(\vec b\). Lấy một điểm A tùy ý.
a) Vẽ \(\overrightarrow {AB} \)\( = \vec a\),\(\overrightarrow {BC} \)\( = \vec b\)
b) Tổng của 2 vec tơ \(\vec a\)và\(\vec b\) bằng vec tơ nào trong hình 4?

Phương pháp giải:
a) Ghi rõ các bước để vẽ hình
b) Áp dụng quy tắc 3 điểm \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
Lời giải chi tiết:
a)
– Qua A vẽ một đường thẳng song song với \(\vec a\). Trên đường thẳng đó lấy điểm B sao cho \(AB = \left| {\vec a} \right|\) và \(\overrightarrow {AB}\) cùng hướng với \({\vec a}\).
– Qua B vẽ một đường thẳng song song với \(\vec b\). Trên đườ ng thẳng đó lấy điểm C sao cho \(BC = \left| {\vec b} \right|\) và \(\overrightarrow {BC}\) cùng hướng với \({\vec b}\).
b) Ta có: \(\vec a + \vec b = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
Trả lời câu hỏi Hoạt động 6 trang 61 SGK Toán 12 Cánh diều
Trong không gian, cho hai vecto \(\vec a,\vec b\)khác \(\;\vec 0\). Lấy một điểm O tùy ý.
a) Vẽ hai vecto \(\overrightarrow {OA} = \vec a,\;\overrightarrow {OB} = \vec b\)
b) Khi đó , hai vecto \(\overrightarrow {OA}, \overrightarrow {OB} \) có giá nằm trong cùng mặt phẳng (P) (hình 10). Nếu định nghĩa góc giữa hai vecto \(\overrightarrow {OA}, \;\overrightarrow {OB} \) trong hai mặt phẳng (P).

Lời giải chi tiết:
Trong không gian, cho hai vecto \(\vec a, \vec b\) khác \(\;\vec 0\). Lấy một điểm O tùy ý và vẽ hai vecto\(\;\overrightarrow {OA} = \vec a,\overrightarrow {OB} = \vec b\). Góc giữa hai vecto \(\vec a,\overrightarrow {b\;} \) trong không gian, ký hiệu \(\left( {\vec a,\vec b} \right)\) là góc giữa hai vecto \(\;\overrightarrow {OA} ,\overrightarrow {OB} \).
Trả lời câu hỏi Hoạt động 2 trang 58 SGK Toán 12 Cánh diều
Trong không gian, cho 2 vec tơ \(\vec a\) và \(\vec b\). Lấy một điểm A tùy ý.
a) Vẽ \(\overrightarrow {AB} \)\( = \vec a\),\(\overrightarrow {BC} \)\( = \vec b\)
b) Tổng của 2 vec tơ \(\vec a\)và\(\vec b\) bằng vec tơ nào trong hình 4?

Phương pháp giải:
a) Ghi rõ các bước để vẽ hình
b) Áp dụng quy tắc 3 điểm \(\overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
Lời giải chi tiết:
a)
– Qua A vẽ một đường thẳng song song với \(\vec a\). Trên đường thẳng đó lấy điểm B sao cho \(AB = \left| {\vec a} \right|\) và \(\overrightarrow {AB}\) cùng hướng với \({\vec a}\).
– Qua B vẽ một đường thẳng song song với \(\vec b\). Trên đườ ng thẳng đó lấy điểm C sao cho \(BC = \left| {\vec b} \right|\) và \(\overrightarrow {BC}\) cùng hướng với \({\vec b}\).
b) Ta có: \(\vec a + \vec b = \overrightarrow {AB} + \overrightarrow {BC} = \overrightarrow {AC} \)
Trả lời câu hỏi Hoạt động 3 trang 59 SGK Toán 12 Cánh diều
Cho hình hộp ABCD.A’B’C’D’. Tìm liên hệ giữa \(\overrightarrow {AB} + \overrightarrow {AD} \) và \(\overrightarrow {AC} ;\;\overrightarrow {AC} + \overrightarrow {AA'} \) và \(\overrightarrow {AC'} \).

Phương pháp giải:
Áp dụng quy tắc ba điểm.
Lời giải chi tiết:
Áp dụng quy tắc ba điểm ta thấy:
\(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {BD} \) (1)
Mà từ hình vẽ ta thấy \(\overrightarrow {BD} = \overrightarrow {AC} \;\;\;\;\;\;\;\;\left( 2 \right)\)
Từ (1) (2) => \(\overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC} \)
\(\overrightarrow {AC} + \overrightarrow {AA'} = \overrightarrow {A'C} \) (3)
Mà \(\overrightarrow {A'C} = \overrightarrow {AC'} \) (4)
Từ (3), (4) suy ra \(\overrightarrow {AC} + \overrightarrow {AA'} = \overrightarrow {AC'} \)
Trả lời câu hỏi Hoạt động 4 trang 59 SGK Toán 12 Cánh diều
Trong không gian , cho hai vecto\(\;\vec a,\vec b.\;\) Lấy một điểm M tùy ý.
a) Vẽ \(\overrightarrow {MA} = \vec a,\;\overrightarrow {MB} = \vec b\;,\overrightarrow {MC} = \overrightarrow { - b} \).
b) Tổng của hai vecto \(\vec a\;\)và \(\;\overrightarrow { - b} \) bằng vecto nào trong hình 7.

Phương pháp giải:
Sử dụng quy tắc hình bình hành.
Lời giải chi tiết:
\( \vec{a}\) + (\( - \vec{b}) =\) \(\overrightarrow {MA} + \overrightarrow {MC} = \overrightarrow {MN} \) (quy tắc hình bình hành).
Trả lời câu hỏi Hoạt động 5 trang 60 SGK Toán 12 Cánh diều
Nêu định nghĩa tích của một số thực \(k \ne 0\;\)với vecto\(\;\vec a\; \ne \vec 0\) trong mặt phẳng.
Lời giải chi tiết:
Cho số thực \(k \ne 0\) và \(vecto\;\vec a \ne \vec 0\). Tích của số k với vecto \(\vec a\) là một vecto, kí hiệu là \(k\vec a,\;\)được xác định như sau:
- Cùng hướng với vecto \(\vec a\) nếu k > 0, ngược hướng với vecto \(\vec a\) nếu k < 0.
- Có độ dài bằng \(\left| k \right|.\left| {\vec a} \right|\).
Trả lời câu hỏi Hoạt động 6 trang 61 SGK Toán 12 Cánh diều
Trong không gian, cho hai vecto \(\vec a,\vec b\)khác \(\;\vec 0\). Lấy một điểm O tùy ý.
a) Vẽ hai vecto \(\overrightarrow {OA} = \vec a,\;\overrightarrow {OB} = \vec b\)
b) Khi đó , hai vecto \(\overrightarrow {OA}, \overrightarrow {OB} \) có giá nằm trong cùng mặt phẳng (P) (hình 10). Nếu định nghĩa góc giữa hai vecto \(\overrightarrow {OA}, \;\overrightarrow {OB} \) trong hai mặt phẳng (P).

Lời giải chi tiết:
Trong không gian, cho hai vecto \(\vec a, \vec b\) khác \(\;\vec 0\). Lấy một điểm O tùy ý và vẽ hai vecto\(\;\overrightarrow {OA} = \vec a,\overrightarrow {OB} = \vec b\). Góc giữa hai vecto \(\vec a,\overrightarrow {b\;} \) trong không gian, ký hiệu \(\left( {\vec a,\vec b} \right)\) là góc giữa hai vecto \(\;\overrightarrow {OA} ,\overrightarrow {OB} \).
Trả lời câu hỏi Hoạt động 7 trang 61 SGK Toán 12 Cánh diều
Trong không gian, cho hình lập phương ABCD.A’B’C’D’ có độ dài bằng 3cm (hình 12).
a) Tính góc giữa hai vecto \(\overrightarrow {AC} ,\overrightarrow {A'D'} \).
b) Tính \(\left| {\overrightarrow {AC} } \right|,\left| {\overrightarrow {A'D'} } \right|\). Cos(\(\overrightarrow {AC} ,\overrightarrow {A'D'} \)).

Phương pháp giải:
Áp dụng quy tắc 3 điểm và vectơ trong không gian.
Lời giải chi tiết:
Ta có A’D’//AD.
Góc giữa \(\overrightarrow {AC} \;\)và\(\;\overrightarrow {A'D'} \)= \(\;\overrightarrow {AC} \) và \(\overrightarrow {AD} \).
a) Mà ABCD là hình vuông => \(\widehat {CAD} = 45^\circ \)
b) \(\overrightarrow {\left| {AC} \right|} .|\overrightarrow {A'D'|} \) = AC.AD = 3.3 = 9.
cos(\(\overrightarrow {AC} ,\overrightarrow {A'D'} \))= cos(\(\overrightarrow {AC} ,\overrightarrow {AD} )\)= \(\frac{{\overrightarrow {AC} .\overrightarrow {AD} }}{{\overrightarrow {\left| {AC} \right|} .\overrightarrow {\left| {AD} \right|} }} = \frac{{3.3}}{{3.3}} = 1\).
Mục 2 trang 58, 59, 60 SGK Toán 12 tập 1 - Cánh Diều thuộc chương trình học về Đạo hàm của hàm số. Đây là một phần kiến thức quan trọng, nền tảng cho việc học tập các chương trình Toán học nâng cao hơn. Mục này tập trung vào việc tìm hiểu về đạo hàm của các hàm số cơ bản, các quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế.
Dưới đây là lời giải chi tiết cho các bài tập trong Mục 2 trang 58, 59, 60 SGK Toán 12 tập 1 - Cánh Diều:
Lời giải:
Lời giải:
f'(x) = 2x - 4
Lời giải:
y' = 2(x + 1)
Để giải các bài tập về đạo hàm một cách nhanh chóng và hiệu quả, bạn nên:
Đạo hàm có rất nhiều ứng dụng trong thực tế, bao gồm:
Hy vọng với lời giải chi tiết và hướng dẫn trên, các bạn học sinh sẽ hiểu rõ hơn về Mục 2 trang 58, 59, 60 SGK Toán 12 tập 1 - Cánh Diều và có thể tự tin giải các bài tập liên quan. Tusach.vn luôn đồng hành cùng các bạn trên con đường chinh phục kiến thức!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập