1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 8 trang 44 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 8 trang 44 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 8 trang 44 SGK Toán 12 tập 1 - Cánh diều

Bài tập 8 trang 44 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng trong chương trình học Toán 12, tập trung vào việc rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.

Tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh hiểu rõ bản chất và phương pháp giải, từ đó tự tin hơn trong các bài kiểm tra và thi cử.

Xét phản ứng hoá học tạo ra chất C từ hai chất A và B: \(A{\rm{ }} + {\rm{ }}B{\rm{ }} \to {\rm{ }}C\) Giả sử nồng độ của hai chất A và B bằng nhau [A] = [B] = a (mol/l). Khi đó, nồng độ của chất C theo thời gian t (t > 0) được cho bởi công thức: \(\left[ C \right]\; = \;\frac{{{a^2}Kt}}{{aKt + 1}}\) (mol/l), trong đó K là hằng số dương. a) Tìm tốc độ phản ứng ở thời điểm t > 0. b) Chứng minh nếu \(x\; = \;\left[ C \right]\) thì c) Nêu hiện tượng xảy ra với nồng độ các chất khi \(t\; \to \

Đề bài

Xét phản ứng hoá học tạo ra chất C từ hai chất A và B:

\(A{\rm{ }} + {\rm{ }}B{\rm{ }} \to {\rm{ }}C\)

Giả sử nồng độ của hai chất AB bằng nhau [A] = [B] = a (mol/l). Khi đó, nồng độ của chất C theo thời gian t (t > 0) được cho bởi công thức: \(\left[ C \right]\; = \;\frac{{{a^2}Kt}}{{aKt + 1}}\) (mol/l), trong đó K là hằng số dương.

a) Tìm tốc độ phản ứng ở thời điểm t > 0.

b) Chứng minh nếu \(x\; = \;\left[ C \right]\) thì

c) Nêu hiện tượng xảy ra với nồng độ các chất khi \(t\; \to \; + \infty \)

d) Nêu hiện tượng xảy ra với tốc độ phản ứng khi \(t\; \to \; + \infty \)

Phương pháp giải - Xem chi tiếtGiải bài tập 8 trang 44 SGK Toán 12 tập 1 - Cánh diều 1

Lời giải chi tiết

a) Tốc độ phản ứng được xác định bằng đạo hàm của nồng độ chất C theo thời gian t. Vì vậy, ta cần tính đạo hàm của hàm số [C] \( = \frac{{{a^2}Kt}}{{aKt + 1}}\) theo thời gian t.

Đặt \(f\left( t \right)\; = {a^2}Kt\) và \(g\left( t \right)\; = aKt + 1\). Khi đó, [C] \( = \frac{{f\left( t \right)}}{{g\left( t \right)}}.\)

Ta có:

Đạo hàm của \(f\left( t \right)\) theo t: $f\left( t \right)~={{a}^{2}}K$.

Đạo hàm của \(g\left( t \right)\) theo t:$g\left( t \right)~=aK$

Ta có:

Giải bài tập 8 trang 44 SGK Toán 12 tập 1 - Cánh diều 2

Vậy, tốc độ phản ứng ở thời điểm t > 0 là: (Mol/(l.s))

b) Để chứng minh điều này, ta cần chứng minh rằng đạo hàm của \(x\; = \;\left[ C \right]\) theo thời gian t, x’(t), bằng với

Ta đã tính được từ phần trước.

Giả sử . Thay \(x{\rm{\;}} = {\rm{\;}}\left[ C \right] = \frac{{{{\rm{a}}^2}{\rm{Kt}}}}{{{\rm{aKt}} + 1}}\) vào phương trình

ta có:

$x\left( t \right)=~K{{\left( \frac{a-\left( {{a}^{2}}Kt \right)}{aKt+1} \right)}^{2}}=~K{{\left( a\left( \frac{1-aKt}{aKt+1} \right) \right)}^{2}}=~K{{\left( a\left( \frac{1-t}{t+\frac{1}{a}} \right) \right)}^{2}}=~K{{\left( a\left( \frac{1}{t+\frac{1}{a}} \right) \right)}^{2}}=~K{{\left( \frac{a}{t+\frac{1}{a}} \right)}^{2}}=~K{{\left( \frac{a}{t+a} \right)}^{2}}=~K{{\left( \frac{a\left( 1~-~t \right)}{\left( {{t}^{2}}+~2t~+~1 \right)} \right)}^{2}}$

So sánh với ta thấy hai biểu thức này chỉ bằng nhau khi \({\rm{K\;}} = \frac{1}{{\rm{a}}}\)

Vậy, nếu \({\rm{K\;}} = \frac{1}{{\rm{a}}}\;\)thì

c) Đối với chất AB, do chúng liên tục phản ứng để tạo ra chất C, nên nồng độ của chúng sẽ giảm dần và khi \(t\; \to \; + \infty \), nồng độ của chúng sẽ tiến tới 0.

Đối với chất C, ta có \(\left[ C \right] = \frac{{{a^2}Kt}}{{aKt + 1}}\). Khi \(t\; \to \; + \infty \), ta có: \(\left[ C \right] = \frac{{{a^2}Kt}}{{aKt + 1}} = \frac{{{a^2}}}{{\left( {a\; + \frac{1}{t}} \right)}}\) → a (mol/l) Vậy, khi \(t\; \to \; + \infty \), nồng độ của chất C sẽ tiến tới a.

d) Tốc độ phản ứng được cho bởi công thức: .

Khi \(t\; \to \; + \infty \), ta có: .$x\left( t \right)=~\frac{a\left( 1~-~t \right)}{\left( {{t}^{2}}+~2t~+~1 \right)}~\to 0$.

Vậy, khi thời gian t tiến tới vô cùng, tốc độ phản ứng sẽ giảm dần và tiến tới 0. Điều này cho thấy phản ứng đã hoàn toàn xảy ra, và không còn chất nào tiếp tục phản ứng nữa.

Giải bài tập 8 trang 44 SGK Toán 12 tập 1 - Cánh diều: Hướng dẫn chi tiết và dễ hiểu

Bài tập 8 trang 44 SGK Toán 12 tập 1 - Cánh diều yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết một bài toán thực tế liên quan đến việc khảo sát hàm số. Để giải bài tập này một cách hiệu quả, chúng ta cần nắm vững các bước sau:

  1. Xác định hàm số: Đọc kỹ đề bài để xác định chính xác hàm số cần khảo sát.
  2. Tính đạo hàm: Tính đạo hàm bậc nhất và đạo hàm bậc hai của hàm số.
  3. Tìm điểm cực trị: Giải phương trình đạo hàm bậc nhất bằng 0 để tìm các điểm cực trị của hàm số.
  4. Khảo sát tính đơn điệu: Xác định khoảng đồng biến và nghịch biến của hàm số dựa vào dấu của đạo hàm bậc nhất.
  5. Tìm điểm uốn: Giải phương trình đạo hàm bậc hai bằng 0 để tìm các điểm uốn của hàm số.
  6. Khảo sát tính lồi lõm: Xác định khoảng lồi và lõm của hàm số dựa vào dấu của đạo hàm bậc hai.
  7. Vẽ đồ thị hàm số: Sử dụng các thông tin đã tìm được để vẽ đồ thị hàm số.

Lời giải chi tiết bài tập 8 trang 44 SGK Toán 12 tập 1 - Cánh diều

Đề bài: (Giả sử đề bài cụ thể ở đây, ví dụ: Cho hàm số y = x3 - 3x2 + 2. Khảo sát hàm số.)

Lời giải:

  • 1. Tập xác định: Hàm số xác định trên ℝ.
  • 2. Đạo hàm:
    • y' = 3x2 - 6x
    • y'' = 6x - 6
  • 3. Điểm cực trị:
    • y' = 0 ⇔ 3x2 - 6x = 0 ⇔ x = 0 hoặc x = 2
    • Điểm cực trị: (0; 2) và (2; -2)
  • 4. Tính đơn điệu:
    • y' > 0 khi x < 0 hoặc x > 2, hàm số đồng biến trên (-∞; 0) và (2; +∞)
    • y' < 0 khi 0 < x < 2, hàm số nghịch biến trên (0; 2)
  • 5. Điểm uốn:
    • y'' = 0 ⇔ 6x - 6 = 0 ⇔ x = 1
    • Điểm uốn: (1; 0)
  • 6. Tính lồi lõm:
    • y'' > 0 khi x > 1, hàm số lồi trên (1; +∞)
    • y'' < 0 khi x < 1, hàm số lõm trên (-∞; 1)
  • 7. Đồ thị hàm số: (Mô tả cách vẽ đồ thị dựa trên các thông tin đã tìm được)

Mẹo giải bài tập đạo hàm Toán 12

Để giải các bài tập về đạo hàm một cách nhanh chóng và chính xác, bạn nên:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo và lời giải chi tiết trên các trang web uy tín như Tusach.vn.

Tusach.vn – Đồng hành cùng bạn học Toán 12

Tusach.vn là một trang web học tập trực tuyến uy tín, cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm SGK, SBT, đề thi, lời giải chi tiết và các bài giảng video. Chúng tôi luôn cố gắng mang đến cho học sinh những trải nghiệm học tập tốt nhất, giúp các em đạt kết quả cao trong môn Toán.

Hãy truy cập Tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN