1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 7 trang 79 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 7 trang 79 SGK Toán 12 tập 2 - Cánh diều

Giải Bài Tập 7 Trang 79 Toán 12 Tập 2 - Cánh Diều

Chào mừng bạn đến với tusach.vn, nơi cung cấp lời giải chi tiết và chính xác cho các bài tập trong SGK Toán 12 tập 2 - Cánh Diều. Bài tập 7 trang 79 thuộc chương trình học quan trọng, đòi hỏi học sinh nắm vững kiến thức về đạo hàm và ứng dụng của đạo hàm.

Chúng tôi hiểu rằng việc tự giải bài tập đôi khi gặp khó khăn. Vì vậy, tusach.vn luôn cố gắng cung cấp những lời giải dễ hiểu, kèm theo các ví dụ minh họa để giúp bạn học tập hiệu quả hơn.

Tính góc giữa hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ): a) \({\Delta _1}:\left\{ \begin{array}{l}x = - 1 + {t_1}\\y = 4 + \sqrt 3 {t_1}\\z = 0\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 1 + \sqrt 3 {t_2}\\y = 4 + {t_2}\\z = 5\end{array} \right.\) (\({t_1},{t_2}\) là tham số); b) \({\Delta _1}:\left\{ \begin{array}{l}x = - 1 + 2t\\y = 3 + t\\z = 4 - t\end{array} \right.\) (t là tham số) và \({\Del

Đề bài

Tính góc giữa hai đường thẳng \({\Delta _1},{\Delta _2}\) trong mỗi trường hợp sau (làm tròn kết quả đến hàng đơn vị của độ):

a) \({\Delta _1}:\left\{ \begin{array}{l}x = - 1 + {t_1}\\y = 4 + \sqrt 3 {t_1}\\z = 0\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 1 + \sqrt 3 {t_2}\\y = 4 + {t_2}\\z = 5\end{array} \right.\) (\({t_1},{t_2}\) là tham số);

b) \({\Delta _1}:\left\{ \begin{array}{l}x = - 1 + 2t\\y = 3 + t\\z = 4 - t\end{array} \right.\) (t là tham số) và \({\Delta _2}:\frac{{x + 1}}{3} = \frac{{y - 1}}{1} = \frac{{z - 4}}{{ - 2}}\);

c) \({\Delta _1}:\frac{{x + 3}}{1} = \frac{{y - 2}}{1} = \frac{{z - 1}}{{ - 1}}\) và \({\Delta _2}:\frac{{x + 2}}{{ - 1}} = \frac{{y - 2}}{3} = \frac{{z - 4}}{1}\).

Phương pháp giải - Xem chi tiếtGiải bài tập 7 trang 79 SGK Toán 12 tập 2 - Cánh diều 1

Sử dụng kiến thức về côsin góc giữa hai đường thẳng để tính: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right)\), \(\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).

Lời giải chi tiết

a) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1;\sqrt 3 ;0} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {\sqrt 3 ;1;0} \right)\).

Ta có: \(\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {1.\sqrt 3 + \sqrt 3 .1 + 0.0} \right|}}{{\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2} + {0^2}} .\sqrt {{{\left( {\sqrt 3 } \right)}^2} + {1^2} + {0^2}} }} = \frac{{\sqrt 3 }}{2}\) nên \(\left( {{\Delta _1},{\Delta _2}} \right) = {30^o}\)

b) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {2;1; - 1} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {3;1; - 2} \right)\).

Ta có: \(\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {2.3 + 1.1 + \left( { - 1} \right).\left( { - 2} \right)} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{3^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{3\sqrt {21} }}{{14}}\) nên \(\left( {{\Delta _1},{\Delta _2}} \right) \approx {11^o}\)

c) Đường thẳng \({\Delta _1}\) có vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1;1; - 1} \right)\).

Đường thẳng \({\Delta _2}\) có vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( { - 1;3;1} \right)\).

Ta có: \(\cos \left( {\overrightarrow {{u_1}} ,\overrightarrow {{u_2}} } \right) = \frac{{\left| {\overrightarrow {{u_1}} .\overrightarrow {{u_2}} } \right|}}{{\left| {\overrightarrow {{u_1}} } \right|.\left| {\overrightarrow {{u_2}} } \right|}} = \frac{{\left| {1.\left( { - 1} \right) + 3.1 + 1.\left( { - 1} \right)} \right|}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{{\left( { - 1} \right)}^2} + {3^2} + {1^2}} }} = \frac{{\sqrt {33} }}{{33}}\) nên \(\left( {{\Delta _1},{\Delta _2}} \right) \approx {80^o}\).

Giải Bài Tập 7 Trang 79 Toán 12 Tập 2 - Cánh Diều: Hướng Dẫn Chi Tiết

Bài tập 7 trang 79 SGK Toán 12 tập 2 - Cánh Diều là một bài tập quan trọng trong chương trình học về đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Dưới đây là hướng dẫn chi tiết cách giải bài tập này:

Nội dung bài tập 7 trang 79 Toán 12 Tập 2 - Cánh Diều

Bài tập 7 yêu cầu học sinh xét hàm số f(x) = x3 - 3x2 + 2 và thực hiện các yêu cầu sau:

  1. Tính đạo hàm f'(x).
  2. Giải phương trình f'(x) = 0.
  3. Lập bảng biến thiên của hàm số.
  4. Tìm các điểm cực trị của hàm số.

Lời giải chi tiết bài tập 7 trang 79 Toán 12 Tập 2 - Cánh Diều

1. Tính đạo hàm f'(x):

f'(x) = 3x2 - 6x

2. Giải phương trình f'(x) = 0:

3x2 - 6x = 0

3x(x - 2) = 0

Vậy, x = 0 hoặc x = 2

3. Lập bảng biến thiên của hàm số:

x-∞02+∞
f'(x)+-+
f(x)NBĐCTC

(NB: Nghịch biến, ĐC: Đồng biến, TC: Tiếp điểm)

4. Tìm các điểm cực trị của hàm số:

  • Tại x = 0, f(0) = 2. Vậy hàm số đạt cực đại tại điểm (0; 2).
  • Tại x = 2, f(2) = 23 - 3(22) + 2 = 8 - 12 + 2 = -2. Vậy hàm số đạt cực tiểu tại điểm (2; -2).

Mở rộng và các bài tập tương tự

Để hiểu rõ hơn về ứng dụng của đạo hàm trong việc tìm cực trị của hàm số, bạn có thể tham khảo thêm các bài tập tương tự trong SGK và sách bài tập Toán 12 tập 2 - Cánh Diều. Việc luyện tập thường xuyên sẽ giúp bạn nắm vững kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Ngoài ra, bạn có thể sử dụng các công cụ tính đạo hàm online để kiểm tra lại kết quả của mình. Điều này sẽ giúp bạn tự tin hơn trong quá trình học tập.

Lưu ý:

  • Luôn kiểm tra lại kết quả sau khi giải bài tập.
  • Hiểu rõ bản chất của bài toán trước khi bắt đầu giải.
  • Sử dụng các công cụ hỗ trợ khi cần thiết.

Chúc bạn học tập tốt và đạt kết quả cao trong môn Toán!

Nếu bạn có bất kỳ câu hỏi nào, đừng ngần ngại liên hệ với tusach.vn để được hỗ trợ.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN