1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều

Tusach.vn xin giới thiệu lời giải chi tiết bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất.

Trong không gian với hệ trục toạ độ Oxyz, cho hình lập phương OBCD.O'B'C'D' có O(0; 0; 0), B(a; 0; 0), D(0; a; 0), O'(0; 0; a) với a > 0. a) Chứng minh rằng đường chéo O'C vuông góc với mặt phẳng (OB'D'). b) Chứng minh rằng giao điểm của đường chéo O'C và mặt phẳng (OB'D') là trọng tâm của tam giác OB'D'. c) Tính khoảng cách từ điểm B' đến mặt phẳng (C'BD). d) Tính côsin của góc giữa hai mặt phẳng (CO'D) và (C'BD).

Đề bài

Trong không gian với hệ trục toạ độ Oxyz, cho hình lập phương OBCD.O'B'C'Dcó O(0; 0; 0), B(a; 0; 0), D(0; a; 0), O'(0; 0; a) với a > 0.

a) Chứng minh rằng đường chéo O'C vuông góc với mặt phẳng (OB'D').

b) Chứng minh rằng giao điểm của đường chéo O'C và mặt phẳng (OB'D') là trọng tâm của tam giác OB'D'.

c) Tính khoảng cách từ điểm B' đến mặt phẳng (C'BD).

d) Tính côsin của góc giữa hai mặt phẳng (CO'D) và (C'BD).

Phương pháp giải - Xem chi tiếtGiải bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều 1

a) Chứng minh hai vectơ \(\overrightarrow {O'C} ,\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right]\) cùng phương, từ đó suy ra \(\overrightarrow {O'C} \) là một vectơ pháp tuyến của mặt phẳng (OB'D'). Suy ra O'C vuông góc với mặt phẳng (OB'D').

b) + Viết phương trình tổng quát mặt phẳng (OB’D’).

+ Viết phương trình tham số đường thẳng O’C.

+ Tìm giao điểm G của mặt phẳng (OB’D’) và đường thẳng O’C.

+ Tìm G’ là trọng tâm của tam giác OB’D’.

+ Chứng minh được G trùng G’.

c) Sử dụng kiến thức về khoảng cách từ một điểm đến một mặt phẳng để tính: Khoảng cách từ điểm \({M_o}\left( {{x_o};{y_o};{z_o}} \right)\) đến mặt phẳng (P): \(Ax + By + Cz + D = 0\) (\({A^2} + {B^2} + {C^2} > 0\)) được tính theo công thức: \(d\left( {{M_o},\left( P \right)} \right) = \frac{{\left| {A{x_o} + B{y_o} + C{z_o} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).

d) Sử dụng kiến thức về côsin góc giữa hai mặt phẳng để tính: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( {{P_1}} \right)\), \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right)\), \(\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có: \(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\).

Lời giải chi tiết

Gọi \(C\left( {{x_C};{y_C};{z_C}} \right)\). Ta có: \(\overrightarrow {OB} = \left( {a;0;0} \right),\overrightarrow {DC} = \left( {{x_C};{y_C} - a;{z_C}} \right)\).

Vì OBCD.O'B'C'D là hình lập phương nên OBCD là hình vuông.

Do đó: \(\overrightarrow {DC} = \overrightarrow {OB} \Leftrightarrow \left\{ \begin{array}{l}{x_C} = a\\{y_C} - a = 0\\{z_C} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = a\\{y_C} = a\\{z_C} = 0\end{array} \right.\). Suy ra, C(a; a; 0).

Gọi \(D'\left( {{x_{D'}};{y_{D'}};{z_{D'}}} \right)\). Ta có: \(\overrightarrow {OO'} = \left( {0;0;a} \right),\overrightarrow {DD'} = \left( {{x_{D'}};{y_{D'}} - a;{z_{D'}}} \right)\).

Vì OBCD.O'B'C'D là hình lập phương nên ODD’O’ là hình vuông.

Do đó: \(\overrightarrow {DD'} = \overrightarrow {OO'} \Leftrightarrow \left\{ \begin{array}{l}{x_{D'}} = 0\\{y_{D'}} - a = 0\\{z_{D'}} = a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{D'}} = 0\\{y_{D'}} = a\\{z_{D'}} = a\end{array} \right.\). Suy ra, D’(0; a; a).

Gọi \(B'\left( {{x_{B'}};{y_{B'}};{z_{B'}}} \right)\). Ta có: \(\overrightarrow {OO'} = \left( {0;0;a} \right),\overrightarrow {BB'} = \left( {{x_{B'}} - a;{y_{B'}};{z_{B'}}} \right)\).

Vì OBCD.O'B'C'D là hình lập phương nên OBB’O’ là hình vuông.

Do đó: \(\overrightarrow {BB'} = \overrightarrow {OO'} \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} - a = 0\\{y_{B'}} = 0\\{z_{B'}} = a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = a\\{y_{B'}} = 0\\{z_{B'}} = a\end{array} \right.\). Suy ra, B’(a; 0; a).

a) Ta có: \(\overrightarrow {OB'} = \left( {a;0;a} \right),\overrightarrow {OD'} = \left( {0;a;a} \right)\)\(\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&a\\a&a\end{array}} \right|;\left| {\begin{array}{*{20}{c}}a&a\\a&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}a&0\\0&a\end{array}} \right|} \right) = \left( { - {a^2}; - {a^2};{a^2}} \right)\)

Mặt phẳng (OB’D’) nhận \(\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] = \left( { - {a^2}; - {a^2};{a^2}} \right)\) làm một vectơ pháp tuyến.

Lại có: \(\overrightarrow {O'C} = \left( {a;a; - a} \right),\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] = - a.\overrightarrow {O'C} \) nên hai vectơ \(\overrightarrow {O'C} ,\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right]\) cùng phương. Do đó, \(\overrightarrow {O'C} \) là một vectơ pháp tuyến của mặt phẳng (OB’D’). Vậy O'C vuông góc với mặt phẳng (OB'D').

b) Mặt phẳng (OB’D’) nhận \(\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] = \left( { - {a^2}; - {a^2};{a^2}} \right)\) làm một vectơ pháp tuyến và đi qua điểm O(0; 0; 0) nên phương trình mặt phẳng (OB’D’) là:

\( - {a^2}\left( {x - 0} \right) - {a^2}\left( {y - 0} \right) + {a^2}\left( {z - 0} \right) = 0 \Leftrightarrow x + y - z = 0\) (Do \(a > 0\))

Đường thẳng O’C đi qua điểm O'(0; 0; a) và nhận \(\frac{1}{a}\overrightarrow {O'C} = \left( {1;1; - 1} \right)\) làm một vectơ chỉ phương nên phương trình tham số đường thẳng O’C là: \(\left\{ \begin{array}{l}x = t\\y = t\\z = a - t\end{array} \right.\) (t là tham số).

Gọi G là giao điểm của đường thẳng O’C và mặt phẳng (OB’D’).

Vì G thuôc O’C nên G(t; t; a-t). Vì G thuộc mặt phẳng (OB’D’) nên:

\(t + t - \left( {a - t} \right) = 0 \Leftrightarrow t = \frac{a}{3}\). Do đó, \(G\left( {\frac{a}{3};\frac{a}{3};\frac{{2a}}{3}} \right)\).

Gọi G’ là trọng tâm của tam giác OB’D’ nên \(G'\left( {\frac{a}{3};\frac{a}{3};\frac{{2a}}{3}} \right)\).

Khi đó, G trùng với G’. Vậy giao điểm của đường chéo O'C và mặt phẳng (OB'D') là trọng tâm của tam giác OB'D'.

c) Gọi \(C'\left( {{x_{C'}};{y_{C'}};{z_{C'}}} \right)\). Ta có: \(\overrightarrow {OO'} = \left( {0;0;a} \right),\overrightarrow {CC'} = \left( {{x_{C'}} - a;{y_{C'}} - a;{z_{C'}}} \right)\).

Vì OBCD.O'B'C'D là hình lập phương nên \(\overrightarrow {CC'} = \overrightarrow {OO'} \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} - a = 0\\{y_{C'}} - a = 0\\{z_{C'}} = a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} = a\\{y_{C'}} = a\\{z_{C'}} = a\end{array} \right.\).

Suy ra, C’(a; a; a).

Ta có: \(\overrightarrow {C'B} = \left( {0; - a; - a} \right),\overrightarrow {C'D} = \left( { - a;0 - a} \right)\), \(\left[ {\overrightarrow {C'B} ,\overrightarrow {C'D} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - a}&{ - a}\\0&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - a}&0\\{ - a}&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - a}\\{ - a}&0\end{array}} \right|} \right) = \left( {{a^2};{a^2}; - {a^2}} \right)\)

Mặt phẳng (C'BD) nhận \(\left[ {\overrightarrow {C'B} ,\overrightarrow {C'D} } \right] = \left( {{a^2};{a^2}; - {a^2}} \right)\) làm một vectơ pháp tuyến và đi qua điểm D(0; a; 0) nên có phương trình: \({a^2}.x + {a^2}\left( {y - a} \right) - {a^2}z = 0 \Leftrightarrow x + y - z - a = 0\)

Ta có: \(d\left( {B',\left( {C'BD} \right)} \right) = \frac{{\left| {a + 0 - a - a} \right|}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{a}{{\sqrt 3 }}\).

d) Ta có: \(\overrightarrow {O'C} = \left( {a;a; - a} \right),\overrightarrow {O'D} = \left( {0;a; - a} \right)\), \(\left[ {\overrightarrow {O'C} ,\overrightarrow {O'D} } \right] = \left( {\left| {\begin{array}{*{20}{c}}a&{ - a}\\a&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - a}&a\\{ - a}&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}a&a\\0&a\end{array}} \right|} \right) = \left( {0;{a^2};{a^2}} \right)\)

Mặt phẳng (CO’D) nhận \(\frac{1}{{{a^2}}}\left[ {\overrightarrow {O'C} ,\overrightarrow {O'D} } \right] = \left( {0;1;1} \right)\) làm một vectơ pháp tuyến, mặt phẳng (C'BD) nhận \(\frac{1}{{{a^2}}}\left[ {\overrightarrow {C'B} ,\overrightarrow {C'D} } \right] = \left( {1;1; - 1} \right)\) làm một vectơ pháp tuyến.

Ta có: \(\cos \left( {\left( {CO'D} \right),\left( {C'BD} \right)} \right) = \frac{{\left| {1.0 + 1.1 - 1.1} \right|}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{0^2} + {1^2} + {1^2}} }} = 0\).

Giải bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều: Tổng quan và Phương pháp

Bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về Đạo hàm, cụ thể là phần ứng dụng của đạo hàm trong việc khảo sát hàm số. Đây là một bài tập quan trọng giúp học sinh củng cố kiến thức về cách tìm cực trị, khoảng đơn điệu và vẽ đồ thị hàm số bậc ba.

Nội dung bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều

Bài tập này thường yêu cầu học sinh thực hiện các bước sau:

  1. Xác định tập xác định của hàm số.
  2. Tính đạo hàm bậc nhất của hàm số.
  3. Tìm các điểm cực trị của hàm số. (Giải phương trình đạo hàm bằng 0)
  4. Xác định khoảng đồng biến, nghịch biến của hàm số. (Dựa vào dấu của đạo hàm)
  5. Tìm cực đại, cực tiểu của hàm số.
  6. Vẽ đồ thị hàm số. (Sử dụng các thông tin đã tìm được)

Lời giải chi tiết bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều

Để giúp các em học sinh hiểu rõ hơn, chúng ta sẽ cùng nhau giải chi tiết bài tập này. (Ở đây sẽ là lời giải chi tiết của bài tập 12, bao gồm các bước giải và giải thích cụ thể. Ví dụ:)

Ví dụ: Xét hàm số y = x3 - 3x2 + 2

  • Tập xác định: D = ℝ
  • Đạo hàm: y' = 3x2 - 6x
  • Điểm cực trị: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  • Khoảng đồng biến, nghịch biến:
    • y' > 0 khi x < 0 hoặc x > 2 => Hàm số đồng biến trên (-∞; 0) và (2; +∞)
    • y' < 0 khi 0 < x < 2 => Hàm số nghịch biến trên (0; 2)
  • Cực trị:
    • x = 0: Điểm cực đại, y = 2
    • x = 2: Điểm cực tiểu, y = -2

Mẹo giải bài tập về đạo hàm và khảo sát hàm số

Để giải tốt các bài tập về đạo hàm và khảo sát hàm số, các em cần:

  • Nắm vững các công thức đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Vẽ đồ thị hàm số để hình dung rõ hơn về tính chất của hàm số.

Tài liệu tham khảo thêm

Ngoài SGK Toán 12 tập 2 - Cánh diều, các em có thể tham khảo thêm các tài liệu sau:

  • Sách bài tập Toán 12
  • Các trang web học Toán trực tuyến
  • Các video hướng dẫn giải bài tập Toán 12 trên YouTube

Kết luận

Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin hơn khi giải bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều và các bài tập tương tự. Chúc các em học tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN