Tusach.vn xin giới thiệu lời giải chi tiết bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều. Bài viết này sẽ giúp học sinh hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
Chúng tôi luôn cố gắng cung cấp nội dung chính xác, dễ hiểu và cập nhật mới nhất.
Trong không gian với hệ trục toạ độ Oxyz, cho hình lập phương OBCD.O'B'C'D' có O(0; 0; 0), B(a; 0; 0), D(0; a; 0), O'(0; 0; a) với a > 0. a) Chứng minh rằng đường chéo O'C vuông góc với mặt phẳng (OB'D'). b) Chứng minh rằng giao điểm của đường chéo O'C và mặt phẳng (OB'D') là trọng tâm của tam giác OB'D'. c) Tính khoảng cách từ điểm B' đến mặt phẳng (C'BD). d) Tính côsin của góc giữa hai mặt phẳng (CO'D) và (C'BD).
Đề bài
Trong không gian với hệ trục toạ độ Oxyz, cho hình lập phương OBCD.O'B'C'D' có O(0; 0; 0), B(a; 0; 0), D(0; a; 0), O'(0; 0; a) với a > 0.
a) Chứng minh rằng đường chéo O'C vuông góc với mặt phẳng (OB'D').
b) Chứng minh rằng giao điểm của đường chéo O'C và mặt phẳng (OB'D') là trọng tâm của tam giác OB'D'.
c) Tính khoảng cách từ điểm B' đến mặt phẳng (C'BD).
d) Tính côsin của góc giữa hai mặt phẳng (CO'D) và (C'BD).
Phương pháp giải - Xem chi tiết
a) Chứng minh hai vectơ \(\overrightarrow {O'C} ,\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right]\) cùng phương, từ đó suy ra \(\overrightarrow {O'C} \) là một vectơ pháp tuyến của mặt phẳng (OB'D'). Suy ra O'C vuông góc với mặt phẳng (OB'D').
b) + Viết phương trình tổng quát mặt phẳng (OB’D’).
+ Viết phương trình tham số đường thẳng O’C.
+ Tìm giao điểm G của mặt phẳng (OB’D’) và đường thẳng O’C.
+ Tìm G’ là trọng tâm của tam giác OB’D’.
+ Chứng minh được G trùng G’.
c) Sử dụng kiến thức về khoảng cách từ một điểm đến một mặt phẳng để tính: Khoảng cách từ điểm \({M_o}\left( {{x_o};{y_o};{z_o}} \right)\) đến mặt phẳng (P): \(Ax + By + Cz + D = 0\) (\({A^2} + {B^2} + {C^2} > 0\)) được tính theo công thức: \(d\left( {{M_o},\left( P \right)} \right) = \frac{{\left| {A{x_o} + B{y_o} + C{z_o} + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
d) Sử dụng kiến thức về côsin góc giữa hai mặt phẳng để tính: Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( {{P_1}} \right)\), \(\left( {{P_2}} \right)\) có vectơ pháp tuyến lần lượt là \(\overrightarrow {{n_1}} = \left( {{A_1};{B_1};{C_1}} \right)\), \(\overrightarrow {{n_2}} = \left( {{A_2};{B_2};{C_2}} \right)\). Khi đó ta có: \(\cos \left( {\left( {{P_1}} \right),\left( {{P_2}} \right)} \right) = \frac{{\left| {{A_1}{A_2} + {B_1}{B_2} + {C_1}{C_2}} \right|}}{{\sqrt {A_1^2 + B_1^2 + C_1^2} .\sqrt {A_2^2 + B_2^2 + C_2^2} }}\).
Lời giải chi tiết
Gọi \(C\left( {{x_C};{y_C};{z_C}} \right)\). Ta có: \(\overrightarrow {OB} = \left( {a;0;0} \right),\overrightarrow {DC} = \left( {{x_C};{y_C} - a;{z_C}} \right)\).
Vì OBCD.O'B'C'D là hình lập phương nên OBCD là hình vuông.
Do đó: \(\overrightarrow {DC} = \overrightarrow {OB} \Leftrightarrow \left\{ \begin{array}{l}{x_C} = a\\{y_C} - a = 0\\{z_C} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_C} = a\\{y_C} = a\\{z_C} = 0\end{array} \right.\). Suy ra, C(a; a; 0).
Gọi \(D'\left( {{x_{D'}};{y_{D'}};{z_{D'}}} \right)\). Ta có: \(\overrightarrow {OO'} = \left( {0;0;a} \right),\overrightarrow {DD'} = \left( {{x_{D'}};{y_{D'}} - a;{z_{D'}}} \right)\).
Vì OBCD.O'B'C'D là hình lập phương nên ODD’O’ là hình vuông.
Do đó: \(\overrightarrow {DD'} = \overrightarrow {OO'} \Leftrightarrow \left\{ \begin{array}{l}{x_{D'}} = 0\\{y_{D'}} - a = 0\\{z_{D'}} = a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{D'}} = 0\\{y_{D'}} = a\\{z_{D'}} = a\end{array} \right.\). Suy ra, D’(0; a; a).
Gọi \(B'\left( {{x_{B'}};{y_{B'}};{z_{B'}}} \right)\). Ta có: \(\overrightarrow {OO'} = \left( {0;0;a} \right),\overrightarrow {BB'} = \left( {{x_{B'}} - a;{y_{B'}};{z_{B'}}} \right)\).
Vì OBCD.O'B'C'D là hình lập phương nên OBB’O’ là hình vuông.
Do đó: \(\overrightarrow {BB'} = \overrightarrow {OO'} \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} - a = 0\\{y_{B'}} = 0\\{z_{B'}} = a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{B'}} = a\\{y_{B'}} = 0\\{z_{B'}} = a\end{array} \right.\). Suy ra, B’(a; 0; a).
a) Ta có: \(\overrightarrow {OB'} = \left( {a;0;a} \right),\overrightarrow {OD'} = \left( {0;a;a} \right)\)\(\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&a\\a&a\end{array}} \right|;\left| {\begin{array}{*{20}{c}}a&a\\a&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}a&0\\0&a\end{array}} \right|} \right) = \left( { - {a^2}; - {a^2};{a^2}} \right)\)
Mặt phẳng (OB’D’) nhận \(\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] = \left( { - {a^2}; - {a^2};{a^2}} \right)\) làm một vectơ pháp tuyến.
Lại có: \(\overrightarrow {O'C} = \left( {a;a; - a} \right),\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] = - a.\overrightarrow {O'C} \) nên hai vectơ \(\overrightarrow {O'C} ,\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right]\) cùng phương. Do đó, \(\overrightarrow {O'C} \) là một vectơ pháp tuyến của mặt phẳng (OB’D’). Vậy O'C vuông góc với mặt phẳng (OB'D').
b) Mặt phẳng (OB’D’) nhận \(\left[ {\overrightarrow {OB'} ,\overrightarrow {OD'} } \right] = \left( { - {a^2}; - {a^2};{a^2}} \right)\) làm một vectơ pháp tuyến và đi qua điểm O(0; 0; 0) nên phương trình mặt phẳng (OB’D’) là:
\( - {a^2}\left( {x - 0} \right) - {a^2}\left( {y - 0} \right) + {a^2}\left( {z - 0} \right) = 0 \Leftrightarrow x + y - z = 0\) (Do \(a > 0\))
Đường thẳng O’C đi qua điểm O'(0; 0; a) và nhận \(\frac{1}{a}\overrightarrow {O'C} = \left( {1;1; - 1} \right)\) làm một vectơ chỉ phương nên phương trình tham số đường thẳng O’C là: \(\left\{ \begin{array}{l}x = t\\y = t\\z = a - t\end{array} \right.\) (t là tham số).
Gọi G là giao điểm của đường thẳng O’C và mặt phẳng (OB’D’).
Vì G thuôc O’C nên G(t; t; a-t). Vì G thuộc mặt phẳng (OB’D’) nên:
\(t + t - \left( {a - t} \right) = 0 \Leftrightarrow t = \frac{a}{3}\). Do đó, \(G\left( {\frac{a}{3};\frac{a}{3};\frac{{2a}}{3}} \right)\).
Gọi G’ là trọng tâm của tam giác OB’D’ nên \(G'\left( {\frac{a}{3};\frac{a}{3};\frac{{2a}}{3}} \right)\).
Khi đó, G trùng với G’. Vậy giao điểm của đường chéo O'C và mặt phẳng (OB'D') là trọng tâm của tam giác OB'D'.
c) Gọi \(C'\left( {{x_{C'}};{y_{C'}};{z_{C'}}} \right)\). Ta có: \(\overrightarrow {OO'} = \left( {0;0;a} \right),\overrightarrow {CC'} = \left( {{x_{C'}} - a;{y_{C'}} - a;{z_{C'}}} \right)\).
Vì OBCD.O'B'C'D là hình lập phương nên \(\overrightarrow {CC'} = \overrightarrow {OO'} \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} - a = 0\\{y_{C'}} - a = 0\\{z_{C'}} = a\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_{C'}} = a\\{y_{C'}} = a\\{z_{C'}} = a\end{array} \right.\).
Suy ra, C’(a; a; a).
Ta có: \(\overrightarrow {C'B} = \left( {0; - a; - a} \right),\overrightarrow {C'D} = \left( { - a;0 - a} \right)\), \(\left[ {\overrightarrow {C'B} ,\overrightarrow {C'D} } \right] = \left( {\left| {\begin{array}{*{20}{c}}{ - a}&{ - a}\\0&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - a}&0\\{ - a}&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}0&{ - a}\\{ - a}&0\end{array}} \right|} \right) = \left( {{a^2};{a^2}; - {a^2}} \right)\)
Mặt phẳng (C'BD) nhận \(\left[ {\overrightarrow {C'B} ,\overrightarrow {C'D} } \right] = \left( {{a^2};{a^2}; - {a^2}} \right)\) làm một vectơ pháp tuyến và đi qua điểm D(0; a; 0) nên có phương trình: \({a^2}.x + {a^2}\left( {y - a} \right) - {a^2}z = 0 \Leftrightarrow x + y - z - a = 0\)
Ta có: \(d\left( {B',\left( {C'BD} \right)} \right) = \frac{{\left| {a + 0 - a - a} \right|}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} }} = \frac{a}{{\sqrt 3 }}\).
d) Ta có: \(\overrightarrow {O'C} = \left( {a;a; - a} \right),\overrightarrow {O'D} = \left( {0;a; - a} \right)\), \(\left[ {\overrightarrow {O'C} ,\overrightarrow {O'D} } \right] = \left( {\left| {\begin{array}{*{20}{c}}a&{ - a}\\a&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{ - a}&a\\{ - a}&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}a&a\\0&a\end{array}} \right|} \right) = \left( {0;{a^2};{a^2}} \right)\)
Mặt phẳng (CO’D) nhận \(\frac{1}{{{a^2}}}\left[ {\overrightarrow {O'C} ,\overrightarrow {O'D} } \right] = \left( {0;1;1} \right)\) làm một vectơ pháp tuyến, mặt phẳng (C'BD) nhận \(\frac{1}{{{a^2}}}\left[ {\overrightarrow {C'B} ,\overrightarrow {C'D} } \right] = \left( {1;1; - 1} \right)\) làm một vectơ pháp tuyến.
Ta có: \(\cos \left( {\left( {CO'D} \right),\left( {C'BD} \right)} \right) = \frac{{\left| {1.0 + 1.1 - 1.1} \right|}}{{\sqrt {{1^2} + {1^2} + {{\left( { - 1} \right)}^2}} .\sqrt {{0^2} + {1^2} + {1^2}} }} = 0\).
Bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về Đạo hàm, cụ thể là phần ứng dụng của đạo hàm trong việc khảo sát hàm số. Đây là một bài tập quan trọng giúp học sinh củng cố kiến thức về cách tìm cực trị, khoảng đơn điệu và vẽ đồ thị hàm số bậc ba.
Bài tập này thường yêu cầu học sinh thực hiện các bước sau:
Để giúp các em học sinh hiểu rõ hơn, chúng ta sẽ cùng nhau giải chi tiết bài tập này. (Ở đây sẽ là lời giải chi tiết của bài tập 12, bao gồm các bước giải và giải thích cụ thể. Ví dụ:)
Ví dụ: Xét hàm số y = x3 - 3x2 + 2
Để giải tốt các bài tập về đạo hàm và khảo sát hàm số, các em cần:
Ngoài SGK Toán 12 tập 2 - Cánh diều, các em có thể tham khảo thêm các tài liệu sau:
Hy vọng với lời giải chi tiết và những lưu ý trên, các em học sinh sẽ tự tin hơn khi giải bài tập 12 trang 88, 89 SGK Toán 12 tập 2 - Cánh diều và các bài tập tương tự. Chúc các em học tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập