Chào mừng các em học sinh đến với lời giải chi tiết bài tập 9 trang 88 SGK Toán 12 tập 2 - Cánh diều. Bài tập này thuộc chương trình học Toán 12, tập trung vào kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp những lời giải chính xác, dễ hiểu và phương pháp giải bài tập hiệu quả.
Tính góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\), biết: \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + {t_1}\\y = 2 - \sqrt 2 {t_1}\\z = 3 + {t_1}\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 3 + {t_2}\\y = 1 + {t_2}\\z = 5 - \sqrt 2 {t_2}\end{array} \right.\) ( là tham số) (làm tròn kết quả đến hàng đơn vị của độ).
Đề bài
Tính góc giữa hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\), biết: \({\Delta _1}:\left\{ \begin{array}{l}x = 1 + {t_1}\\y = 2 - \sqrt 2 {t_1}\\z = 3 + {t_1}\end{array} \right.\) và \({\Delta _2}:\left\{ \begin{array}{l}x = - 3 + {t_2}\\y = 1 + {t_2}\\z = 5 - \sqrt 2 {t_2}\end{array} \right.\) ( là tham số) (làm tròn kết quả đến hàng đơn vị của độ).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về côsin góc giữa hai đường thẳng để tính: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right)\), \(\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).
Lời giải chi tiết
Đường thẳng \({\Delta _1}\) có một vectơ chỉ phương \(\overrightarrow {{u_1}} = \left( {1; - \sqrt 2 ;1} \right)\).
Đường thẳng \({\Delta _2}\) có một vectơ chỉ phương \(\overrightarrow {{u_2}} = \left( {1;1; - \sqrt 2 } \right)\).
Ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {1.1 - \sqrt 2 .1 - \sqrt 2 .1} \right|}}{{\sqrt {{1^2} + {{\left( { - \sqrt 2 } \right)}^2} + {1^2}} .\sqrt {{1^2} + {1^2} + {{\left( { - \sqrt 2 } \right)}^2}} }} = \frac{{2\sqrt 2 - 1}}{4}\) nên \(\left( {{\Delta _1},{\Delta _2}} \right) \approx {63^o}\).
Bài tập 9 trang 88 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng trong chương trình học Toán 12, giúp học sinh củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Dưới đây là hướng dẫn giải chi tiết bài tập này, giúp các em hiểu rõ phương pháp và tự tin giải các bài tập tương tự.
Bài tập yêu cầu chúng ta khảo sát hàm số và tìm các điểm cực trị, khoảng đồng biến, nghịch biến. Để giải bài tập này, chúng ta cần thực hiện các bước sau:
Để minh họa, chúng ta sẽ xét một ví dụ cụ thể. Giả sử hàm số cần khảo sát là: f(x) = x3 - 3x2 + 2.
Bước 1: Xác định tập xác định.
Hàm số f(x) = x3 - 3x2 + 2 là một hàm đa thức, do đó tập xác định của hàm số là D = ℝ.
Bước 2: Tính đạo hàm bậc nhất.
f'(x) = 3x2 - 6x.
Bước 3: Tìm các điểm cực trị.
Giải phương trình f'(x) = 0, ta được:
3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2.
Vậy, hàm số có hai điểm cực trị là x1 = 0 và x2 = 2.
Bước 4: Lập bảng biến thiên.
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| f'(x) | + | - | + | |
| f(x) | ↗ | ↘ | ↗ |
Bước 5: Kết luận.
Để giải các bài tập về khảo sát hàm số một cách hiệu quả, các em cần:
tusach.vn hy vọng với hướng dẫn chi tiết này, các em sẽ tự tin giải bài tập 9 trang 88 SGK Toán 12 tập 2 - Cánh diều và đạt kết quả tốt trong môn Toán. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập