Bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng trong chương trình học Toán 12, tập trung vào việc rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh hiểu rõ bản chất và phương pháp giải.
Lập phương trình mặt cầu (S) trong mỗi trường hợp sau: a) (S) có tâm I(3; -7; 1) và bán kính \(R = 2\); b) (S) có tâm I(-1; 4; -5) và đi qua điểm M(3; 1; 2); c) (S) có đường kính là đoạn thẳng CD với C(1; -3; -1) và D(-3; 1; 2).
Đề bài
Lập phương trình mặt cầu (S) trong mỗi trường hợp sau:
a) (S) có tâm I(3; -7; 1) và bán kính \(R = 2\);
b) (S) có tâm I(-1; 4; -5) và đi qua điểm M(3; 1; 2);
c) (S) có đường kính là đoạn thẳng CD với C(1; -3; -1) và D(-3; 1; 2).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình mặt cầu để lập phương trình mặt cầu: Phương trình mặt cầu tâm \(I\left( {a;b;c} \right)\), bán kính R có là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
a) (S) có tâm I(3; -7; 1), bán kính \(R = 2\) có phương trình là \({\left( {x - 3} \right)^2} + {\left( {y + 7} \right)^2} + {\left( {z - 1} \right)^2} = 4\).
b) (S) có tâm I và bán kính \(IM = \sqrt {{{\left( {3 + 1} \right)}^2} + {{\left( {1 - 4} \right)}^2} + {{\left( {2 + 5} \right)}^2}} = \sqrt {74} \) nên phương trình mặt cầu (S) là: \({\left( {x + 1} \right)^2} + {\left( {y - 4} \right)^2} + {\left( {z + 5} \right)^2} = 74\).
c) Gọi I là trung điểm của CD nên \(I\left( { - 1; - 1;\frac{1}{2}} \right)\).
Vì mặt cầu (S) có đường kính là CD nên (S) có tâm \(I\left( { - 1; - 1;\frac{1}{2}} \right)\), bán kính \(R = IC = \sqrt {{{\left( {1 + 1} \right)}^2} + {{\left( { - 3 + 1} \right)}^2} + {{\left( { - 1 - \frac{1}{2}} \right)}^2}} = \frac{{\sqrt {41} }}{2}\).
Do đó, phương trình mặt cầu (S) là: \({\left( {x + 1} \right)^2} + {\left( {y + 1} \right)^2} + {\left( {z - \frac{1}{2}} \right)^2} = \frac{{41}}{4}\).
Bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để tìm cực trị của hàm số và xác định khoảng đồng biến, nghịch biến của hàm số.
Bài tập 6 yêu cầu học sinh khảo sát hàm số y = x3 - 3x2 + 2.
1. Tập xác định: Hàm số y = x3 - 3x2 + 2 có tập xác định là D = ℝ.
2. Đạo hàm bậc nhất: y' = 3x2 - 6x.
3. Tìm điểm cực trị:
4. Bảng biến thiên:
| x | -∞ | 0 | 2 | +∞ | |
|---|---|---|---|---|---|
| y' | + | 0 | - | 0 | + |
| y | ↗ | 2 | ↘ | -2 | ↗ |
5. Kết luận:
Hy vọng với lời giải chi tiết này, các em học sinh sẽ hiểu rõ hơn về bài tập 6 trang 86 SGK Toán 12 tập 2 - Cánh diều và có thể tự tin giải các bài tập tương tự. Hãy truy cập tusach.vn để xem thêm nhiều bài giải Toán 12 khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập