Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 1 trang 17,18,19 SGK Toán 12 tập 2, sách Cánh Diều. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và dễ hiểu nhất.
Bài tập này thuộc chương trình học Toán 12, tập trung vào việc rèn luyện kỹ năng và kiến thức đã học.
Định nghĩa tích phân
Trả lời câu hỏi Hoạt động 2 trang 20 SGK Toán 12 Cánh diều
Cho hàm số \(f(x) = {x^2}\)
a) Chứng tỏ \(F(x) = \frac{{{x^3}}}{3}\), \(G(x) = \frac{{{x^3}}}{3} + C\) là các nguyên hàm của hàm số \(f(x) = {x^2}\)
b) Chứng minh rằng \(F(b) - F(a) = G(b) - G(a)\), tức là hiệu số \(F(b) - F(a)\) không phụ thuộc việc chọn nguyên hàm
Phương pháp giải:
Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K
Lời giải chi tiết:
a) \(F'(x) = G'(x) = {x^2} = f(x)\) nên \(F(x) = \frac{{{x^3}}}{3}\), \(G(x) = \frac{{{x^3}}}{3} + C\) là các nguyên hàm của hàm số \(f(x) = {x^2}\)
b) \(F(b) - F(a) = \frac{{{b^3}}}{3} - \frac{{{a^3}}}{3}\)
\(G(b) - G(a) = \frac{{{b^3}}}{3} + C - \frac{{{a^3}}}{3} - C = \frac{{{b^3}}}{3} - \frac{{{a^3}}}{3}\)
=> \(F(b) - F(a) = G(b) - G(a)\)
Trả lời câu hỏi Hoạt động 1 trang 17 SGK Toán 12 Cánh diều
Cho hàm số \(y = f(x) = {x^2}\) (Hình 4). Xét hình phẳng (được tô màu) gồm tất cả điểm M(x;y) trên mặt phẳng tọa độ sao cho \(1 \le x \le 2\) và \(0 \le y \le {x^2}\). Hình phẳng đó được gọi là hình thang cong AMNB giới hạn bởi đồ thị của hàm số \(f(x) = {x^2}\), trục Ox và hai đường thẳng x = 1 và x = 2

Chia đoạn [1;2] thành n phần bằng nhau bởi các điểm chia: \({x_0} = 1,{x_1} = 1 + \frac{1}{n},{x_2} = 1 + \frac{2}{n},...,{x_{n - 1}} = 1 + \frac{{n - 1}}{n},{x_n} = 1 + \frac{n}{n} = 2\) (Hình 5)

a) Tính diện tích \({T_0}\) của hình chữ nhật dựng trên đoạn \([{x_0};{x_1}]\) với chiều cao là \(f({x_0})\)
Tính diện tích \({T_1}\) của hình chữ nhật dựng trên đoạn \([{x_1};{x_2}]\) với chiều cao là \(f({x_1})\)
Tính diện tích \({T_2}\) của hình chữ nhật dựng trên đoạn \([{x_2};{x_3}]\) với chiều cao là \(f({x_2})\)
…
Tính diện tích \({T_{n - 1}}\) của hình chữ nhật dựng trên đoạn \([{x_{n - 1}};{x_n}]\) với chiều cao là \(f({x_{n - 1}})\)
b) Đặt \({S_n} = {T_0} + {T_1} + {T_2} + ... + {T_{n - 1}}\). Chứng minh rằng: \({S_n} = \frac{1}{n}[f({x_0}) + f({x_1}) + f({x_2}) + ... + f({x_{n - 1}})]\). Tổng \({S_n}\) gọi là tổng tích phân cấp n của hàm số \(f(x) = {x^2}\) trên đoạn [1;2]
Phương pháp giải:
a) Áp dụng công thức tính diện tích hình chữ nhật
b) Biến đổi biểu thức cho thích hợp
Lời giải chi tiết:
a) \({T_0} = f({x_0}).({x_1} - {x_0}) = f(1).({x_1} - 1)\)
\({T_1} = f({x_1}).({x_2} - {x_1})\)
\({T_2} = f({x_2}).({x_3} - {x_2})\)
…
\({T_{n - 1}} = f({x_{n - 1}}).({x_n} - {x_{n - 1}})\) b) \({T_0} = f({x_0}).({x_1} - {x_0}) = f({x_0}).({x_0} + \frac{1}{n} - {x_0}) = \frac{{f({x_0})}}{n}\)
\({T_1} = f({x_1}).({x_2} - {x_1}) = f({x_1}).({x_1} + \frac{1}{n} - {x_1}) = \frac{{f({x_1})}}{n}\)
\({T_2} = f({x_2}).({x_3} - {x_2}) = f({x_2}).({x_2} + \frac{1}{n} - {x_2}) = \frac{{f({x_2})}}{n}\)
…
\({T_{n - 1}} = f({x_{n - 1}}).({x_n} - {x_{n - 1}}) = f({x_{n - 1}}).({x_{n - 1}} + \frac{1}{n} - {x_{n - 1}}) = \frac{{f({x_{n - 1}})}}{n}\)
Vậy \({S_n} = {T_0} + {T_1} + {T_2} + ... + {T_{n - 1}} = \frac{1}{n}[f({x_0}) + f({x_1}) + f({x_2}) + ... + f({x_{n - 1}})]\)
Trả lời câu hỏi Hoạt động 1 trang 17 SGK Toán 12 Cánh diều
Cho hàm số \(y = f(x) = {x^2}\) (Hình 4). Xét hình phẳng (được tô màu) gồm tất cả điểm M(x;y) trên mặt phẳng tọa độ sao cho \(1 \le x \le 2\) và \(0 \le y \le {x^2}\). Hình phẳng đó được gọi là hình thang cong AMNB giới hạn bởi đồ thị của hàm số \(f(x) = {x^2}\), trục Ox và hai đường thẳng x = 1 và x = 2

Chia đoạn [1;2] thành n phần bằng nhau bởi các điểm chia: \({x_0} = 1,{x_1} = 1 + \frac{1}{n},{x_2} = 1 + \frac{2}{n},...,{x_{n - 1}} = 1 + \frac{{n - 1}}{n},{x_n} = 1 + \frac{n}{n} = 2\) (Hình 5)

a) Tính diện tích \({T_0}\) của hình chữ nhật dựng trên đoạn \([{x_0};{x_1}]\) với chiều cao là \(f({x_0})\)
Tính diện tích \({T_1}\) của hình chữ nhật dựng trên đoạn \([{x_1};{x_2}]\) với chiều cao là \(f({x_1})\)
Tính diện tích \({T_2}\) của hình chữ nhật dựng trên đoạn \([{x_2};{x_3}]\) với chiều cao là \(f({x_2})\)
…
Tính diện tích \({T_{n - 1}}\) của hình chữ nhật dựng trên đoạn \([{x_{n - 1}};{x_n}]\) với chiều cao là \(f({x_{n - 1}})\)
b) Đặt \({S_n} = {T_0} + {T_1} + {T_2} + ... + {T_{n - 1}}\). Chứng minh rằng: \({S_n} = \frac{1}{n}[f({x_0}) + f({x_1}) + f({x_2}) + ... + f({x_{n - 1}})]\). Tổng \({S_n}\) gọi là tổng tích phân cấp n của hàm số \(f(x) = {x^2}\) trên đoạn [1;2]
Phương pháp giải:
a) Áp dụng công thức tính diện tích hình chữ nhật
b) Biến đổi biểu thức cho thích hợp
Lời giải chi tiết:
a) \({T_0} = f({x_0}).({x_1} - {x_0}) = f(1).({x_1} - 1)\)
\({T_1} = f({x_1}).({x_2} - {x_1})\)
\({T_2} = f({x_2}).({x_3} - {x_2})\)
…
\({T_{n - 1}} = f({x_{n - 1}}).({x_n} - {x_{n - 1}})\) b) \({T_0} = f({x_0}).({x_1} - {x_0}) = f({x_0}).({x_0} + \frac{1}{n} - {x_0}) = \frac{{f({x_0})}}{n}\)
\({T_1} = f({x_1}).({x_2} - {x_1}) = f({x_1}).({x_1} + \frac{1}{n} - {x_1}) = \frac{{f({x_1})}}{n}\)
\({T_2} = f({x_2}).({x_3} - {x_2}) = f({x_2}).({x_2} + \frac{1}{n} - {x_2}) = \frac{{f({x_2})}}{n}\)
…
\({T_{n - 1}} = f({x_{n - 1}}).({x_n} - {x_{n - 1}}) = f({x_{n - 1}}).({x_{n - 1}} + \frac{1}{n} - {x_{n - 1}}) = \frac{{f({x_{n - 1}})}}{n}\)
Vậy \({S_n} = {T_0} + {T_1} + {T_2} + ... + {T_{n - 1}} = \frac{1}{n}[f({x_0}) + f({x_1}) + f({x_2}) + ... + f({x_{n - 1}})]\)
Trả lời câu hỏi Hoạt động 2 trang 20 SGK Toán 12 Cánh diều
Cho hàm số \(f(x) = {x^2}\)
a) Chứng tỏ \(F(x) = \frac{{{x^3}}}{3}\), \(G(x) = \frac{{{x^3}}}{3} + C\) là các nguyên hàm của hàm số \(f(x) = {x^2}\)
b) Chứng minh rằng \(F(b) - F(a) = G(b) - G(a)\), tức là hiệu số \(F(b) - F(a)\) không phụ thuộc việc chọn nguyên hàm
Phương pháp giải:
Cho hàm số f(x) xác định trên K. Hàm số F(x) được gọi là nguyên hàm của hàm số f(x) trên K nếu F’(x) = f(x) với mọi x thuộc K
Lời giải chi tiết:
a) \(F'(x) = G'(x) = {x^2} = f(x)\) nên \(F(x) = \frac{{{x^3}}}{3}\), \(G(x) = \frac{{{x^3}}}{3} + C\) là các nguyên hàm của hàm số \(f(x) = {x^2}\)
b) \(F(b) - F(a) = \frac{{{b^3}}}{3} - \frac{{{a^3}}}{3}\)
\(G(b) - G(a) = \frac{{{b^3}}}{3} + C - \frac{{{a^3}}}{3} - C = \frac{{{b^3}}}{3} - \frac{{{a^3}}}{3}\)
=> \(F(b) - F(a) = G(b) - G(a)\)
Mục 1 trang 17, 18, 19 SGK Toán 12 tập 2 - Cánh Diều là một phần quan trọng trong chương trình học, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm. Nắm vững kiến thức này là nền tảng để giải quyết các bài toán phức tạp hơn trong các chương tiếp theo. Tusach.vn sẽ cung cấp lời giải chi tiết, dễ hiểu cho từng bài tập, giúp các em học sinh tự tin hơn trong quá trình học tập.
Bài tập này yêu cầu học sinh vận dụng các quy tắc tính đạo hàm đã học để tìm đạo hàm của các hàm số đơn giản. Ví dụ:
f(x) = 3x2 + 2x - 1
f'(x) = 6x + 2
Bài tập này tập trung vào việc sử dụng quy tắc chuỗi để tính đạo hàm của hàm hợp. Ví dụ:
f(x) = sin(x2)
f'(x) = cos(x2) * 2x
Bài tập này yêu cầu học sinh tìm cực trị của hàm số bằng cách giải phương trình đạo hàm bằng 0 và xét dấu đạo hàm. Ví dụ:
f(x) = x3 - 3x + 2
f'(x) = 3x2 - 3
Giải phương trình f'(x) = 0, ta được x = 1 hoặc x = -1
Xét dấu đạo hàm, ta thấy hàm số đạt cực đại tại x = -1 và cực tiểu tại x = 1
Tusach.vn cam kết cung cấp lời giải chi tiết, chính xác và dễ hiểu cho tất cả các bài tập trong SGK Toán 12 tập 2 - Cánh Diều. Chúng tôi hy vọng rằng với sự hỗ trợ của Tusach.vn, các em học sinh sẽ học tập hiệu quả hơn và đạt được kết quả tốt nhất.
Ngoài ra, Tusach.vn còn cung cấp nhiều tài liệu học tập hữu ích khác như:
Hãy truy cập Tusach.vn ngay hôm nay để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập