Bài tập 10 trang 80 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng trong chương trình học Toán 12, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế.
tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh hiểu rõ phương pháp và tự tin làm bài.
Trong không gian với hệ tọa độ Oxyz, cho hình chóp S. ABCD có các đỉnh lần lượt là (Sleft( {0;0;frac{{asqrt 3 }}{2}} right),Aleft( {frac{a}{2};0;0} right),Bleft( { - frac{a}{2};0;0} right),Cleft( { - frac{a}{2};a;0} right),Dleft( {frac{a}{2};a;0} right)) với (a > 0) (Hình 36).
Đề bài
Trong không gian với hệ tọa độ Oxyz, cho hình chóp S. ABCD có các đỉnh lần lượt là \(S\left( {0;0;\frac{{a\sqrt 3 }}{2}} \right),A\left( {\frac{a}{2};0;0} \right),B\left( { - \frac{a}{2};0;0} \right),C\left( { - \frac{a}{2};a;0} \right),D\left( {\frac{a}{2};a;0} \right)\) với \(a > 0\) (Hình 36).

a) Xác định tọa độ của các vectơ \(\overrightarrow {SA} ,\overrightarrow {CD} \). Từ đó tính góc giữa hai đường thẳng SA và CD (làm tròn kết quả đến hàng đơn vị của độ).
b) Chỉ ra một vectơ pháp tuyến của mặt phẳng (SAC). Từ đó tính góc đường thẳng SD và mặt phẳng (SAC) (làm tròn kết quả đến hàng đơn vị của độ).
Phương pháp giải - Xem chi tiết
a) Sử dụng kiến thức về côsin góc giữa hai đường thẳng để tính: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \({\Delta _1}\) và \({\Delta _2}\) có vectơ chỉ phương lần lượt là \(\overrightarrow {{u_1}} = \left( {{a_1};{b_1};{c_1}} \right)\), \(\overrightarrow {{u_2}} = \left( {{a_2};{b_2};{c_2}} \right)\). Khi đó, ta có: \(\cos \left( {{\Delta _1},{\Delta _2}} \right) = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\)
b) Sử dụng kiến thức về côsin góc giữa đường thẳng và mặt phẳng để tính: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(\Delta \) có vectơ chỉ phương \(\overrightarrow u = \left( {{a_1};{b_1};{c_1}} \right)\) và mặt phẳng (P) có vectơ pháp tuyến \(\overrightarrow n = \left( {{a_2};{b_2};{c_2}} \right)\). Gọi \(\left( {\Delta ,\left( P \right)} \right)\) là góc giữa đường thẳng \(\Delta \) và mặt phẳng (P). Khi đó, \(\sin \left( {\Delta ,\left( P \right)} \right) = \left| {\cos \left( {\overrightarrow u ,\overrightarrow n } \right)} \right| = \frac{{\left| {\overrightarrow u .\overrightarrow n } \right|}}{{\left| {\overrightarrow u } \right|.\left| {\overrightarrow n } \right|}} = \frac{{\left| {{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}} \right|}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} .\sqrt {a_2^2 + b_2^2 + c_2^2} }}\).
Lời giải chi tiết
a) Ta có: \(\overrightarrow {SA} = \left( {\frac{a}{2};0;\frac{{ - a\sqrt 3 }}{2}} \right),\overrightarrow {CD} = \left( {a;0;0} \right)\).
Do đó, \(\cos \left( {SA,CD} \right) = \frac{{\left| {\frac{a}{2}.a + 0.0 - \frac{{a\sqrt 3 }}{2}.0} \right|}}{{\sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {0^2} + {{\left( {\frac{{ - a\sqrt 3 }}{2}} \right)}^2}} .\sqrt {{a^2} + {0^2} + {0^2}} }} = \frac{1}{2}\) nên \(\left( {SA,CD} \right) = {60^o}\).
b) Mặt phẳng (SAC) nhận \(\left[ {\overrightarrow {SA} ,\overrightarrow {AC} } \right]\) làm một vectơ pháp tuyến.
Ta có: \(\overrightarrow {SA} = \left( {\frac{a}{2};0;\frac{{ - a\sqrt 3 }}{2}} \right),\overrightarrow {AC} = \left( { - a;a;0} \right),\overrightarrow {SD} = \left( {\frac{a}{2};a;\frac{{ - a\sqrt 3 }}{2}} \right)\).
\(\left[ {\overrightarrow {SA} ,\overrightarrow {AC} } \right] = \left( {\left| {\begin{array}{*{20}{c}}0&{\frac{{ - a\sqrt 3 }}{2}}\\a&0\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\frac{{ - a\sqrt 3 }}{2}}&{\frac{a}{2}}\\0&{ - a}\end{array}} \right|;\left| {\begin{array}{*{20}{c}}{\frac{a}{2}}&0\\{ - a}&a\end{array}} \right|} \right) = \left( {\frac{{{a^2}\sqrt 3 }}{2};\frac{{{a^2}\sqrt 3 }}{2};\frac{{{a^2}}}{2}} \right)\)
Do đó, \(\sin \left( {\left( {SAC} \right),SD} \right) = \frac{{\left| {\frac{{{a^2}\sqrt 3 }}{2}.\frac{a}{2} + \frac{{{a^2}\sqrt 3 }}{2}.a + \frac{{{a^2}}}{2}.\frac{{ - a\sqrt 3 }}{2}} \right|}}{{\sqrt {{{\left( {\frac{{{a^2}\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{{a^2}\sqrt 3 }}{2}} \right)}^2} + {{\left( {\frac{{{a^2}}}{2}} \right)}^2}} \sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {a^2} + {{\left( {\frac{{ - a\sqrt 3 }}{2}} \right)}^2}} }} = \frac{{\sqrt {42} }}{{14}}\).
Suy ra, \(\left( {\left( {SAC} \right),SD} \right) \approx {28^o}\).
Bài tập 10 trang 80 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm của hàm số. Đây là một bài tập điển hình để rèn luyện kỹ năng vận dụng đạo hàm vào việc giải quyết các bài toán liên quan đến tính đơn điệu của hàm số, cực trị của hàm số và ứng dụng của đạo hàm trong thực tế.
Bài tập yêu cầu học sinh sử dụng kiến thức về đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số, tìm cực đại, cực tiểu và vẽ đồ thị hàm số. Cụ thể, bài tập thường có dạng:
Để giải bài tập này một cách hiệu quả, các em cần nắm vững các bước sau:
Giả sử hàm số y = x3 - 3x2 + 2. Ta thực hiện các bước sau:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | NB | ĐC | TD |
tusach.vn cung cấp lời giải chi tiết, dễ hiểu, được trình bày rõ ràng, giúp các em học sinh nắm vững kiến thức và tự tin làm bài. Ngoài ra, chúng tôi còn cung cấp nhiều tài liệu học tập hữu ích khác, như lý thuyết, công thức, bài tập trắc nghiệm, và các bài giải khác của SGK Toán 12 tập 2 - Cánh diều.
Hãy truy cập tusach.vn ngay hôm nay để được hỗ trợ tốt nhất trong quá trình học tập!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập