Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2 trang 88 SGK Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp kiến thức chính xác và dễ hiểu nhất.
Bảng 9 biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của 1 công ty (đơn vị: triệu đồng) a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó
Đề bài
Bảng 9 biểu diễn mẫu số liệu ghép nhóm thống kê mức lương của 1 công ty (đơn vị: triệu đồng).

a) Tính khoảng biến thiên của mẫu số liệu ghép nhóm đó.
b) Tính khoảng tứ phân vị của mẫu số liệu ghép nhóm đó.
Phương pháp giải - Xem chi tiết
a) Khoảng biến thiên là hiệu của đầu mút phải nhóm cuối cùng và đầu mút trái nhóm đầu tiên.
b) Khoảng tứ phân vị là \({Q_3} - {Q_1}\).
Lời giải chi tiết
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là: \(R = 40 - 10 = 30\).
b) Số phần tử của mẫu là n = 60.
Tần số tích lũy của các nhóm lần lượt là \(c{f_1} = 15\), \(c{f_2} = 33\), \(c{f_3} = 43\), \(c{f_4} = 53\), \(c{f_5} = 58\), \(c{f_6} = 60\).
Ta có: \(\frac{n}{4} = \frac{{60}}{4} = 15\) suy ra nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 15. Xét nhóm 1 là nhóm [10;15] có s = 10, h = 5, \({n_1} = 15\).
Ta có tứ phân vị thứ nhất là: \({Q_1} = s + \left( {\frac{{15 - c{f_0}}}{{{n_1}}}} \right).h = 10 + \left( {\frac{{15 - 0}}{{15}}} \right).5 = 15\).
Ta có: \(\frac{{3n}}{4} = \frac{{3.60}}{4} = 45\) mà 43 < 45 < 53 suy ra nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bẳng 45. Xét nhóm 4 là nhóm [25;30] có t = 25, l = 5, \({n_4} = 10\)và nhóm 3 là nhóm [20;25] có \(c{f_3} = 43\).
Ta có tứ phân vị thứ ba là: \({Q_3} = t + \left( {\frac{{45 - c{f_3}}}{{{n_4}}}} \right).l = 25 + \left( {\frac{{45 - 43}}{{10}}} \right).5 = 26\).
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là: \({Q_3} - {Q_1} = 26 - 15 = 11\).
Bài tập 2 trang 88 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về đạo hàm. Đây là một bài tập quan trọng giúp học sinh củng cố kiến thức về cách tính đạo hàm của hàm số và ứng dụng đạo hàm để giải quyết các bài toán thực tế.
Bài tập yêu cầu tính đạo hàm của các hàm số sau:
Để giải bài tập này, chúng ta cần nắm vững các quy tắc tính đạo hàm cơ bản sau:
a) y = x4 + 3x2 - 2
y' = (x4)' + (3x2)' - (2)' = 4x3 + 6x - 0 = 4x3 + 6x
b) y = 2x3 - 5x + 1
y' = (2x3)' - (5x)' + (1)' = 6x2 - 5 + 0 = 6x2 - 5
c) y = (x2 + 1)(x - 2)
y' = (x2 + 1)'(x - 2) + (x2 + 1)(x - 2)' = 2x(x - 2) + (x2 + 1)(1) = 2x2 - 4x + x2 + 1 = 3x2 - 4x + 1
d) y = (x + 1) / (x - 1)
y' = [(x + 1)'(x - 1) - (x + 1)(x - 1)'] / (x - 1)2 = [1(x - 1) - (x + 1)(1)] / (x - 1)2 = (x - 1 - x - 1) / (x - 1)2 = -2 / (x - 1)2
Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự trong SGK và sách bài tập Toán 12 tập 1 - Cánh diều.
Hy vọng với lời giải chi tiết và dễ hiểu này, các em đã nắm vững phương pháp giải bài tập 2 trang 88 SGK Toán 12 tập 1 - Cánh diều. Chúc các em học tập tốt!
| Hàm số | Đạo hàm |
|---|---|
| y = x4 + 3x2 - 2 | y' = 4x3 + 6x |
| y = 2x3 - 5x + 1 | y' = 6x2 - 5 |
| y = (x2 + 1)(x - 2) | y' = 3x2 - 4x + 1 |
| y = (x + 1) / (x - 1) | y' = -2 / (x - 1)2 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập