1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều

Giải bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.

Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp kiến thức chính xác và dễ hiểu nhất.

Một chiếc máy được đặt trên một giá đỡ ba chân với điểm đặt E(0;0;6) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là ({A_1}(0;1;0)), ({A_2}(frac{{sqrt 3 }}{2}; - frac{1}{2};0)), ({A_3}( - frac{{sqrt 3 }}{2}; - frac{1}{2};0)) (Hình 40). Biết rằng trọng lượng của chiếc máy là 300N. Tìm tọa độ của các lực tác dụng lên giá đỡ (overrightarrow {{F_1}} ,overrightarrow {{F_2}} ,overrightarrow {{F_3}} )

Đề bài

Một chiếc máy được đặt trên một giá đỡ ba chân với điểm đặt E(0;0;6) và các điểm tiếp xúc với mặt đất của ba chân lần lượt là \({A_1}(0;1;0)\), \({A_2}(\frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\), \({A_3}( - \frac{{\sqrt 3 }}{2}; - \frac{1}{2};0)\) (Hình 40). Biết rằng trọng lượng của chiếc máy là 300N. Tìm tọa độ của các lực tác dụng lên giá đỡ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} ,\overrightarrow {{F_3}} \)

Giải bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều 1

Phương pháp giải - Xem chi tiếtGiải bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều 2

Vì đèn cân bằng nên trọng lực của đèn sẽ phân bố đều trên các chân của giá đỡ. Từ tọa độ các điểm đã cho, ta tìm được cái mối liên hệ với vecto lực và tìm được tọa độ của các vecto lực

Lời giải chi tiết

Ta có:

\(\left| {\overrightarrow {{A_1}O} } \right| = \sqrt {{{(0 - 0)}^2} + {{(1 - 0)}^2} + {{(0 - 0)}^2}} = 1\);

\(\left| {\overrightarrow {{A_2}O} } \right| = \sqrt {{{\left( {\frac{{\sqrt 3 }}{2} - 0} \right)}^2} + {{\left( { - \frac{1}{2} - 0} \right)}^2} + {{(0 - 0)}^2}} = 1\);

\(\left| {\overrightarrow {{A_3}O} } \right| = \sqrt {{{\left( { - \frac{{\sqrt 3 }}{2} - 0} \right)}^2} + {{\left( { - \frac{1}{2} - 0} \right)}^2} + {{(0 - 0)}^2}} = 1\).

Do đó \({A_1}O = {A_2}O = {A_3}O = 1\), suy ra O là trọng tâm tam giác \({A_1}{A_2}{A_3}\).

Khi đó \(\overrightarrow {E{A_1}} + \overrightarrow {E{A_2}} + \overrightarrow {E{A_3}} = 3\overrightarrow {EO} \) (tính chất trọng tâm).

Mặt khác, dễ dàng chứng minh độ dài các giá đỡ \(E{A_1} = E{A_2} = E{A_3}\) (do các tam giác vuông \(EO{A_1}\), \(EO{A_2}\), \(EO{A_3}\) bằng nhau). Các lực \(\overrightarrow {{F_1}} \), \(\overrightarrow {{F_2}} \), \(\overrightarrow {{F_3}} \) cùng phương với các giá đỡ và có độ lớn bằng nhau nên ta có tỉ lệ:

\(\frac{{\left| {\overrightarrow {{F_1}} } \right|}}{{E{A_1}}} = \frac{{\left| {\overrightarrow {{F_2}} } \right|}}{{E{A_2}}} = \frac{{\left| {\overrightarrow {{F_3}} } \right|}}{{E{A_3}}} = k\) và \(\overrightarrow {{F_1}} = k\overrightarrow {E{A_1}} \), \(\overrightarrow {{F_2}} = k\overrightarrow {E{A_2}} \), \(\overrightarrow {{F_3}} = k\overrightarrow {E{A_3}} \).

Từ \(\overrightarrow {E{A_1}} + \overrightarrow {E{A_2}} + \overrightarrow {E{A_3}} = 3\overrightarrow {EO} \) đã chứng minh, ta được:

\(k\overrightarrow {E{A_1}} + k\overrightarrow {E{A_2}} + k\overrightarrow {E{A_3}} = 3k\overrightarrow {EO} \)

\( \Leftrightarrow \overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = 3k\overrightarrow {EO} \).

Mà \(\overrightarrow {EO} = (0 - 0;0 - 0;0 - 6) = (0;0 - 6)\).

Suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = (0;0; - 18k)\).

Giả sử \(\overrightarrow P \) là trọng lực tác động lên cả 3 giá đỡ. \(\overrightarrow P \) là lực vuông góc với mặt phẳng (Oxy), hướng xuống dưới (ngược chiều với trục Oz) nên tọa độ của \(\overrightarrow P = (0;0; - 300)\).

Suy ra \(\overrightarrow {{F_1}} + \overrightarrow {{F_2}} + \overrightarrow {{F_3}} = \overrightarrow P \Leftrightarrow - 18k = - 300 \Leftrightarrow k = \frac{{50}}{3}\).

Vậy \(\overrightarrow {{F_1}} = (0;\frac{{50}}{3}; - 100)\); \(\overrightarrow {{F_2}} = (\frac{{25\sqrt 3 }}{3}; - \frac{{25}}{3}; - 100)\); \(\overrightarrow {{F_3}} = ( - \frac{{25\sqrt 3 }}{3}; - \frac{{25}}{3}; - 100)\).

Giải bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều: Hướng dẫn chi tiết và dễ hiểu

Bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng trong chương trình học Toán 12, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều

Bài tập 15 thường bao gồm các dạng bài sau:

  • Dạng 1: Tìm đạo hàm của hàm số và xác định các điểm mà tại đó đạo hàm bằng 0 hoặc không xác định.
  • Dạng 2: Xét dấu đạo hàm để xác định khoảng đồng biến, nghịch biến của hàm số.
  • Dạng 3: Tìm cực trị của hàm số bằng cách sử dụng đạo hàm.
  • Dạng 4: Giải các bài toán ứng dụng liên quan đến đạo hàm, ví dụ như tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước.

Lời giải chi tiết bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều

Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể:

Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Hãy tìm đạo hàm của hàm số và xác định các điểm cực trị.

  1. Bước 1: Tính đạo hàm của hàm số: y' = 3x2 - 6x
  2. Bước 2: Tìm các điểm mà đạo hàm bằng 0: 3x2 - 6x = 0 => x = 0 hoặc x = 2
  3. Bước 3: Xét dấu đạo hàm:
    • Với x < 0, y' > 0 => Hàm số đồng biến trên khoảng (-∞, 0)
    • Với 0 < x < 2, y' < 0 => Hàm số nghịch biến trên khoảng (0, 2)
    • Với x > 2, y' > 0 => Hàm số đồng biến trên khoảng (2, +∞)
  4. Bước 4: Kết luận: Hàm số có cực đại tại x = 0 và cực tiểu tại x = 2.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, các em cần lưu ý những điều sau:

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán để kiểm tra kết quả.
  • Đọc kỹ đề bài và xác định rõ yêu cầu của bài toán.

Tusach.vn – Nguồn tài liệu học tập Toán 12 uy tín

Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm SGK, SBT, đề thi, bài giải và các bài viết hướng dẫn giải bài tập chi tiết. Chúng tôi luôn cập nhật những thông tin mới nhất và đảm bảo chất lượng của các tài liệu. Hãy truy cập Tusach.vn để có thêm nhiều kiến thức và kỹ năng học tập Toán 12 nhé!

Hy vọng với hướng dẫn chi tiết này, các em sẽ tự tin giải quyết bài tập 15 trang 83 SGK Toán 12 tập 1 - Cánh diều và đạt kết quả tốt trong môn Toán.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN