Bài tập 13 trang 48 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng trong chương trình học Toán 12, tập trung vào việc rèn luyện kỹ năng về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số.
tusach.vn xin giới thiệu lời giải chi tiết, dễ hiểu bài tập này, giúp các em học sinh hiểu rõ bản chất và phương pháp giải, từ đó tự tin hơn trong các bài kiểm tra và thi cử.
Có hai xã A,B cùng ở một bên bờ sông Lam, khoảng cách từ hai xã đó đến bờ sông lần lượt là AA’ =500m, BB’=600m và người ta đo được A’B’= 2.200m(hình 37). Các kĩ sư muốn xây một trạm cung cấp nước sạch nằm bên bờ sông Lam cho người dân hai xã. Để tiết kiệm chi phí, các kĩ sư cần phải chọn vị trí M của trạm cung cấp nước sạch đó trên đoạn A’B’ sao cho tổng khoảng cách từ hai xa đến vị trí M là nhỏ nhất. Hãy tìm giá trị nhỏ nhất của tổng khoảng cách đó.
Đề bài
Có hai xã A,B cùng ở một bên bờ sông Lam, khoảng cách từ hai xã đó đến bờ sông lần lượt là AA’ =500m, BB’=600m và người ta đo được A’B’= 2.200m(hình 37). Các kĩ sư muốn xây một trạm cung cấp nước sạch nằm bên bờ sông Lam cho người dân hai xã. Để tiết kiệm chi phí, các kĩ sư cần phải chọn vị trí M của trạm cung cấp nước sạch đó trên đoạn A’B’ sao cho tổng khoảng cách từ hai xa đến vị trí M là nhỏ nhất. Hãy tìm giá trị nhỏ nhất của tổng khoảng cách đó.

Phương pháp giải - Xem chi tiết
- Phân tích đề bài
- Tìm mối liên hệ trong bài
Lời giải chi tiết
Đặt A'M = x (m).
Suy ra B'M = A'B' – A'M = 2200 – x (m).
Rõ ràng, x phải thỏa mãn điều kiện 0 < x < 2200.
Áp dụng định lí Pythagore ta tính được:
\(AM = \sqrt {A'{A^2} + A'{M^2}} {\rm{\;}} = \sqrt {{{500}^2} + {x^2}} \) (m)
\(BM = \sqrt {B'{B^2} + B'{M^2}} {\rm{\;}} = \sqrt {{{600}^2} + {{(2200 - x)}^2}} \) (m)
Tổng khoảng cách từ hai vị trí A, B đến vị trí M là
\(D = AM + BM = \sqrt {{{500}^2} + {x^2}} {\rm{\;}} + \sqrt {{{600}^2} + {{(2200 - x)}^2}} \) (m)
Xét hàm số \(D(x) = \sqrt {{{500}^2} + {x^2}} {\rm{\;}} + \sqrt {{{600}^2} + (2200 - {x^2})} \) với \(x \in (0;2200)\).
\(D'(x) = \frac{{2x}}{{2\sqrt {{{500}^2} + {x^2}} }} + \frac{{2x - 4400}}{{\sqrt {{{600}^2} + {{(2200 - x)}^2}} }} = \frac{x}{{\sqrt {{{500}^2} + {x^2}} }} + \frac{{x - 2200}}{{\sqrt {{{600}^2} + {{(2200 - x)}^2}} }}\).
Trên khoảng (0;2200), ta thấy D'(x) = 0 khi x = 1000.
Bảng biến thiên của hàm số D(x) như sau:

Căn cứ vào bảng biến thiên, ta thấy hàm số D(x) đạt giá trị nhỏ nhất bằng \(1100\sqrt 5 \) tại x = 1 000.
Vậy giá trị nhỏ nhất của tổng khoảng cách cần tìm là \(1100\sqrt 5 \) m.
Bài tập 13 trang 48 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về đạo hàm và ứng dụng của đạo hàm. Bài tập này yêu cầu học sinh vận dụng kiến thức đã học để giải quyết các bài toán thực tế liên quan đến việc tìm cực trị của hàm số.
Bài tập 13 thường có dạng như sau: Cho hàm số y = f(x). Tìm các điểm cực trị của hàm số. Hoặc, tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số trên một khoảng cho trước.
Ví dụ: Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.
Giải:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | NB | ĐC | TC | NB |
Chú thích: NB - Nghịch biến, ĐC - Đồng biến, TC - Tăng, Giảm
tusach.vn cung cấp:
Hãy truy cập tusach.vn ngay hôm nay để được hỗ trợ giải bài tập 13 trang 48 SGK Toán 12 tập 1 - Cánh diều và các bài tập Toán 12 khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập