1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài tập 2 trang 15 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 2 trang 15 SGK Toán 12 tập 2 - Cánh diều

Giải bài tập 2 trang 15 SGK Toán 12 tập 2 - Cánh diều

Chào mừng các em học sinh đến với lời giải chi tiết bài tập 2 trang 15 SGK Toán 12 tập 2 - Cánh diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em tự tin hơn trong quá trình học tập.

Tusach.vn luôn đồng hành cùng các em học sinh, cung cấp tài liệu học tập chất lượng và hỗ trợ tối đa cho việc ôn luyện và làm bài tập.

\(\int {{7^x}dx} \) bằng: A. \({7^x}.\ln 7 + C\) B. \(\frac{{{7^{x + 1}}}}{{x + 1}} + C\) C. \(\frac{{{7^x}}}{{\ln 7}} + C\) D. \({7^x} + C\)

Đề bài

\(\int {{7^x}dx} \) bằng:

A. \({7^x}.\ln 7 + C\)

B. \(\frac{{{7^{x + 1}}}}{{x + 1}} + C\)

C. \(\frac{{{7^x}}}{{\ln 7}} + C\)

D. \({7^x} + C\)

Phương pháp giải - Xem chi tiếtGiải bài tập 2 trang 15 SGK Toán 12 tập 2 - Cánh diều 1

\(\int {f(x)dx = F(x) + C} \) với F’(x) = f(x)

Lời giải chi tiết

\(\int {{7^x}dx} = \frac{{{7^x}}}{{\ln 7}} + C\)

Giải bài tập 2 trang 15 SGK Toán 12 tập 2 - Cánh diều: Tổng quan và Phương pháp giải

Bài tập 2 trang 15 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về đạo hàm. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về đạo hàm của hàm số để giải quyết các bài toán thực tế. Để giải quyết bài tập này một cách hiệu quả, các em cần nắm vững các khái niệm cơ bản về đạo hàm, các quy tắc tính đạo hàm và các ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập 2 trang 15 SGK Toán 12 tập 2 - Cánh diều

Bài tập 2 thường có dạng như sau: Cho hàm số f(x). Tính đạo hàm f'(x). Sau đó, sử dụng đạo hàm để xác định các điểm cực trị, khoảng đồng biến, nghịch biến của hàm số. Hoặc bài tập có thể yêu cầu tìm tham số m để hàm số có tính chất nào đó (ví dụ: hàm số có cực đại, cực tiểu).

Lời giải chi tiết bài tập 2 trang 15 SGK Toán 12 tập 2 - Cánh diều

Để giúp các em hiểu rõ hơn về cách giải bài tập này, chúng ta sẽ cùng nhau phân tích một ví dụ cụ thể:

Ví dụ:

Cho hàm số y = x3 - 3x2 + 2. Tìm các điểm cực trị của hàm số.

  1. Bước 1: Tính đạo hàm y'
  2. y' = 3x2 - 6x

  3. Bước 2: Tìm các điểm làm đạo hàm bằng 0
  4. 3x2 - 6x = 0 ⇔ 3x(x - 2) = 0 ⇔ x = 0 hoặc x = 2

  5. Bước 3: Lập bảng biến thiên
  6. x-∞02+∞
    y'+-+
    yNBĐCTC
  7. Bước 4: Kết luận
  8. Hàm số đạt cực đại tại x = 0, giá trị cực đại là y = 2. Hàm số đạt cực tiểu tại x = 2, giá trị cực tiểu là y = -2.

Mẹo giải bài tập đạo hàm hiệu quả

  • Nắm vững các quy tắc tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng máy tính cầm tay để kiểm tra lại kết quả.
  • Tham khảo các tài liệu tham khảo, sách bài tập để mở rộng kiến thức.

Các bài tập tương tự

Để củng cố kiến thức, các em có thể tự giải các bài tập tương tự trong SGK và sách bài tập Toán 12 tập 2 - Cánh diều. Ngoài ra, các em cũng có thể tìm kiếm các bài tập trực tuyến trên các trang web học tập uy tín.

Tusach.vn - Đồng hành cùng các em trên con đường học tập

Tusach.vn hy vọng rằng với lời giải chi tiết và phương pháp giải rõ ràng này, các em sẽ tự tin hơn trong việc giải bài tập 2 trang 15 SGK Toán 12 tập 2 - Cánh diều và đạt kết quả tốt trong môn Toán. Chúc các em học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN