Chào mừng các em học sinh đến với lời giải chi tiết bài tập 5 trang 43 SGK Toán 12 tập 1 - Cánh diều. Bài viết này sẽ giúp các em hiểu rõ phương pháp giải và áp dụng vào các bài tập tương tự.
tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp kiến thức chính xác và dễ hiểu nhất.
khảo sát về sự biến thiên và vẽ đồ thị của các hàm số sau: (a,;y = 2{x^3} - 3x + 1 b,;y = - {x^3} + 3x - 1) c, ( y = {left( {x - 2} right)^3} + 4) d,(y = - {x^3} + 3{x^2} - 1) e, (y = frac{1}{3}{x^3} + {x^2} + 2x + 1) g,( y = - {x^3} - 3x)
Đề bài
khảo sát về sự biến thiên và vẽ đồ thị của các hàm số sau:
a,\(y = 2{x^3} - 3{x^2} + 1\)
b,\(y = - {x^3} + 3{x^2} - 1\)
c, \( y = {\left( {x - 2} \right)^3} + 4\)
d,\(y = - {x^3} + 3{x^2} - 3x + 2\)
e, \(y = \frac{1}{3}{x^3} + {x^2} + 2x + 1\)
g,\( y = - {x^3} - 3x\)
Phương pháp giải - Xem chi tiết
Tìm TXD
Xét sự biến thiên
Vẽ đồ thị
Lời giải chi tiết
a,
\(y = 2{x^3} - 3{x^2} + 1\)
Tập xác định: D = R
\(y' = 6{x^2}\) - 6x; y' = 0 \( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 0}\end{array}} \right.\)
Bảng biến thiên

Đồ thị hàm số

b,
\(y = - {x^3} + 3{x^2} - 1\)
Tập xác định: D = R
\(y' = - 3{x^2} + 6x\); y' = 0 \( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 0}\\{x = 2}\end{array}} \right.\)
Bảng biến thiên

Đồ thị hàm số

c,
\(y = {\left( {x - 2} \right)^3} + 4\)
Tập xác định: D = R
\(y' = 3{\left( {x - 2} \right)^2} \), y’=0 \( = > {\left( {x\;-\;2} \right)^2} = 0 = > x - 2 = 0 = > x = 2\)
Bảng biến thiên

Đồ thị hàm số

d,
\(y = - {x^3} + 3{x^2} - 3x + 2\)
Tập xác định: D = R
\(y' = - 3{x^2} + 6x - 3,\;y' = 0 = > x = 1\)
Bảng biến thiên:

Đồ thị hàm số

e,\(y = \frac{1}{3}{x^3} + {x^2} + 2x + 1 = > y' = {x^2} + 2x + 2 > 0, \forall x \in D\)
Tập xác định: D = R

Đồ thị hàm số

g,\(y = - {x^3} - 3x = > y' = - 3{x^2} - 3 < 0, \forall x \in D\)
Tập xác định: D = R
Bảng biến thiên

Đồ thị hàm số

\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 1}\\{x = 0}\end{array}} \right.\)
Bài tập 5 trang 43 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về giới hạn của hàm số. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học nâng cao hơn. Bài tập này yêu cầu học sinh vận dụng kiến thức về giới hạn để giải quyết các bài toán cụ thể.
Bài tập 5 thường bao gồm các dạng bài sau:
Để giải bài tập này, chúng ta cần nắm vững các kiến thức sau:
Ví dụ minh họa:
Giả sử bài tập yêu cầu tính giới hạn: lim (x→2) (x2 - 4) / (x - 2)
Cách giải:
Vậy, lim (x→2) (x2 - 4) / (x - 2) = 4
Để củng cố kiến thức, các em có thể luyện tập thêm các bài tập tương tự trong SGK và các tài liệu tham khảo khác. tusach.vn cung cấp đầy đủ các bài giải chi tiết và hướng dẫn giải các bài tập Toán 12 tập 1 - Cánh diều.
Chúc các em học tập tốt và đạt kết quả cao trong môn Toán!
| Chương | Bài | Nội dung |
|---|---|---|
| 1 | 5 | Giới hạn của hàm số |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập