Bài tập 6 trang 81 SGK Toán 12 tập 1 - Cánh diều là một bài tập quan trọng trong chương trình học Toán 12. Bài tập này yêu cầu học sinh vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế.
Tại tusach.vn, chúng tôi cung cấp lời giải chi tiết, dễ hiểu và chính xác nhất cho bài tập này, giúp bạn hiểu rõ bản chất và phương pháp giải.
Trong không gian với hệ tọa độ Oxyz, cho A(-2;3;0), B(4;0;5), C(0;2;-3). a) Chứng minh rằng ba điểm A, B, C không thẳng hàng b) Tính chu vi tam giác ABC c) Tìm tọa độ trọng tâm G của tam giác ABC d) Tính (cos widehat {BAC})
Đề bài
Trong không gian với hệ tọa độ Oxyz, cho A(-2;3;0), B(4;0;5), C(0;2;-3).
a) Chứng minh rằng ba điểm A, B, C không thẳng hàng
b) Tính chu vi tam giác ABC
c) Tìm tọa độ trọng tâm G của tam giác ABC
d) Tính \(\cos \widehat {BAC}\)
Phương pháp giải - Xem chi tiết
a) A, B, C không thẳng hàng khi \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương
b) Chu vi tam giác ABC bằng tổng độ dài ba cạnh
c) Cho tam giác ABC có \(A({a_1};{a_2};{a_3})\), \(B({b_1};{b_2};{b_3})\), \(C({c_1};{c_2};{c_3})\), ta có \(G(\frac{{{a_1} + {b_1} + {c_1}}}{3};\frac{{{a_2} + {b_2} + {c_2}}}{3};\frac{{{a_3} + {b_3} + {c_3}}}{3})\) là trọng tâm của tam giác ABC
d) \(\cos (\overrightarrow a ,\overrightarrow b ) = \frac{{\overrightarrow a .\overrightarrow b }}{{|\overrightarrow a |.|\overrightarrow b |}}\)
Lời giải chi tiết
a) Ta có: \(\overrightarrow {AB} = (6; - 3;5),\overrightarrow {AC} = (2; - 1; - 3)\)
\(\overrightarrow {AB} \ne k\overrightarrow {AC} \) nên \(\overrightarrow {AB} ,\overrightarrow {AC} \) không cùng phương hay A, B, C không thẳng hàng
b) Ta có: \(AB = \sqrt {{6^2} + {{( - 3)}^2} + {5^2}} = \sqrt {70} \)
\(AC = \sqrt {{2^2} + {{( - 1)}^2} + {{( - 3)}^2}} = \sqrt {14} \)
\(\overrightarrow {BC} = ( - 4;2; - 8) \Rightarrow BC = \sqrt {{{( - 4)}^2} + {2^2} + {{( - 8)}^2}} = 2\sqrt {21} \)
Chu vi tam giác ABC là: AB + AC + BC = \(\sqrt {70} \)+ \(\sqrt {14} \)+ \(2\sqrt {21} \)
c) Tọa độ trọng tâm G của tam giác ABC là: \(G(\frac{{ - 2 + 4 + 0}}{3};\frac{{3 + 0 + 2}}{3};\frac{{0 + 5 - 3}}{3}) \Rightarrow G(\frac{2}{3};\frac{5}{3};\frac{2}{3})\)
d) \(\cos \widehat {BAC} = \frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{6.2 - 3.( - 1) + 5.( - 3)}}{{\sqrt {70} .\sqrt {14} }} = 0\)
Bài tập 6 trang 81 SGK Toán 12 tập 1 - Cánh diều thuộc chương trình học về đạo hàm của hàm số. Đây là một phần kiến thức nền tảng và quan trọng trong chương trình Toán 12, đóng vai trò then chốt trong việc giải quyết các bài toán liên quan đến tối ưu hóa, khảo sát hàm số và ứng dụng thực tế.
Bài tập 6 yêu cầu học sinh sử dụng kiến thức về đạo hàm để giải quyết một bài toán thực tế, thường liên quan đến việc tìm giá trị lớn nhất hoặc nhỏ nhất của một hàm số trong một khoảng cho trước. Cụ thể, bài tập có thể yêu cầu:
Để giải bài tập này một cách hiệu quả, bạn cần thực hiện các bước sau:
Bài tập: Tìm giá trị lớn nhất và nhỏ nhất của hàm số f(x) = x3 - 3x2 + 2 trên đoạn [-1; 3].
Lời giải:
Tusach.vn là một website cung cấp đầy đủ các tài liệu học tập Toán 12, bao gồm:
Hãy truy cập tusach.vn ngay hôm nay để có được những tài liệu học tập tốt nhất và đạt kết quả cao trong kỳ thi THPT Quốc gia!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập