Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 2 trang 21, 22, 23 SGK Toán 12 tập 2 chương trình Cánh Diều. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em hiểu rõ kiến thức và tự tin giải quyết các bài toán.
Bài viết này sẽ cung cấp đáp án, phương pháp giải và giải thích chi tiết từng bước để các em có thể nắm vững kiến thức về chủ đề này.
Tính chất của tích phân
Trả lời câu hỏi Hoạt động 3 trang 21 SGK Toán 12 Cánh diều
So sánh \(\int\limits_0^1 {2xdx} \) và \(2\int\limits_0^1 {xdx} \)
Phương pháp giải:
Tính các tích phân rồi so sánh kết quả
Lời giải chi tiết:
\(\int\limits_0^1 {2xdx} = \left. {{x^2}} \right|_0^1 = 1 - 0 = 0\)
\(2\int\limits_0^1 {xdx} = \left. {2\frac{{{x^2}}}{2}} \right|_0^1 = \left. {{x^2}} \right|_0^11 - 0 = 0\)
Vậy \(\int\limits_0^1 {2xdx} \) = \(2\int\limits_0^1 {xdx} \)
Trả lời câu hỏi Hoạt động 5 trang 22 SGK Toán 12 Cánh diều
So sánh: \(\int\limits_0^1 {2xdx} + \int\limits_1^2 {2xdx} \) và \(\int\limits_0^2 {2xdx} \)
Phương pháp giải:
Tính các tích phân rồi so sánh kết quả
Lời giải chi tiết:
\(\int\limits_0^1 {2xdx} + \int\limits_1^2 {2xdx} = \left. {{x^2}} \right|_0^1 + \left. {{x^2}} \right|_1^2 = 1 + 4 - 1 = 4\)
\(\int\limits_0^2 {2xdx} = \left. {{x^2}} \right|_0^2 = 4\)
Vậy \(\int\limits_0^1 {2xdx} + \int\limits_1^2 {2xdx} \) = \(\int\limits_0^2 {2xdx} \)
Trả lời câu hỏi Hoạt động 3 trang 21 SGK Toán 12 Cánh diều
So sánh \(\int\limits_0^1 {2xdx} \) và \(2\int\limits_0^1 {xdx} \)
Phương pháp giải:
Tính các tích phân rồi so sánh kết quả
Lời giải chi tiết:
\(\int\limits_0^1 {2xdx} = \left. {{x^2}} \right|_0^1 = 1 - 0 = 0\)
\(2\int\limits_0^1 {xdx} = \left. {2\frac{{{x^2}}}{2}} \right|_0^1 = \left. {{x^2}} \right|_0^11 - 0 = 0\)
Vậy \(\int\limits_0^1 {2xdx} \) = \(2\int\limits_0^1 {xdx} \)
Trả lời câu hỏi Hoạt động 4 trang 21 SGK Toán 12 Cánh diều
So sánh:
a) \(\int\limits_0^1 {(2x + 3)dx} \) và \(\int\limits_0^1 {2xdx} + \int\limits_0^1 {3dx} \)
b) \(\int\limits_0^1 {(2x - 3)dx} \) và \(\int\limits_0^1 {2xdx} - \int\limits_0^1 {3dx} \)
Phương pháp giải:
Tính các tích phân rồi so sánh kết quả
Lời giải chi tiết:
a) \(\int\limits_0^1 {(2x + 3)dx} = \left. {\left( {{x^2} + 3x} \right)} \right|_0^1 = 1 + 3 = 4\)
\(\int\limits_0^1 {2xdx} + \int\limits_0^1 {3dx} = \left. {{x^2}} \right|_0^1 + \left. {3x} \right|_0^1 = 1 + 3 = 4\)
Vậy \(\int\limits_0^1 {(2x + 3)dx} \) = \(\int\limits_0^1 {2xdx} + \int\limits_0^1 {3dx} \)
b) \(\int\limits_0^1 {(2x - 3)dx} = \left. {\left( {{x^2} - 3x} \right)} \right|_0^1 = 1 - 3 = - 2\)
\(\int\limits_0^1 {2xdx} - \int\limits_0^1 {3dx} = \left. {{x^2}} \right|_0^1 - \left. {3x} \right|_0^1 = 1 - 3 = - 2\)
Vậy \(\int\limits_0^1 {(2x - 3)dx} \) = \(\int\limits_0^1 {2xdx} - \int\limits_0^1 {3dx} \)
Trả lời câu hỏi Hoạt động 5 trang 22 SGK Toán 12 Cánh diều
So sánh: \(\int\limits_0^1 {2xdx} + \int\limits_1^2 {2xdx} \) và \(\int\limits_0^2 {2xdx} \)
Phương pháp giải:
Tính các tích phân rồi so sánh kết quả
Lời giải chi tiết:
\(\int\limits_0^1 {2xdx} + \int\limits_1^2 {2xdx} = \left. {{x^2}} \right|_0^1 + \left. {{x^2}} \right|_1^2 = 1 + 4 - 1 = 4\)
\(\int\limits_0^2 {2xdx} = \left. {{x^2}} \right|_0^2 = 4\)
Vậy \(\int\limits_0^1 {2xdx} + \int\limits_1^2 {2xdx} \) = \(\int\limits_0^2 {2xdx} \)
Trả lời câu hỏi Hoạt động 4 trang 21 SGK Toán 12 Cánh diều
So sánh:
a) \(\int\limits_0^1 {(2x + 3)dx} \) và \(\int\limits_0^1 {2xdx} + \int\limits_0^1 {3dx} \)
b) \(\int\limits_0^1 {(2x - 3)dx} \) và \(\int\limits_0^1 {2xdx} - \int\limits_0^1 {3dx} \)
Phương pháp giải:
Tính các tích phân rồi so sánh kết quả
Lời giải chi tiết:
a) \(\int\limits_0^1 {(2x + 3)dx} = \left. {\left( {{x^2} + 3x} \right)} \right|_0^1 = 1 + 3 = 4\)
\(\int\limits_0^1 {2xdx} + \int\limits_0^1 {3dx} = \left. {{x^2}} \right|_0^1 + \left. {3x} \right|_0^1 = 1 + 3 = 4\)
Vậy \(\int\limits_0^1 {(2x + 3)dx} \) = \(\int\limits_0^1 {2xdx} + \int\limits_0^1 {3dx} \)
b) \(\int\limits_0^1 {(2x - 3)dx} = \left. {\left( {{x^2} - 3x} \right)} \right|_0^1 = 1 - 3 = - 2\)
\(\int\limits_0^1 {2xdx} - \int\limits_0^1 {3dx} = \left. {{x^2}} \right|_0^1 - \left. {3x} \right|_0^1 = 1 - 3 = - 2\)
Vậy \(\int\limits_0^1 {(2x - 3)dx} \) = \(\int\limits_0^1 {2xdx} - \int\limits_0^1 {3dx} \)
Mục 2 trong SGK Toán 12 tập 2 Cánh Diều thường tập trung vào một chủ đề quan trọng trong chương trình, thường là về một loại hàm số, phương trình, hoặc bất đẳng thức cụ thể. Việc nắm vững kiến thức và kỹ năng giải các bài tập trong mục này là rất quan trọng để đạt kết quả tốt trong các kỳ thi sắp tới.
Để hiểu rõ hơn về nội dung của Mục 2, chúng ta cần xem xét các bài tập cụ thể được đề cập trong SGK. Thông thường, các bài tập sẽ bao gồm:
Dưới đây là hướng dẫn giải chi tiết các bài tập trong Mục 2 trang 21, 22, 23 SGK Toán 12 tập 2 Cánh Diều:
Đề bài: (Giả sử đề bài là giải phương trình logarit)
Lời giải:
Đề bài: (Giả sử đề bài là tính đạo hàm của hàm số)
Lời giải:
Sử dụng các quy tắc tính đạo hàm cơ bản để tính đạo hàm của hàm số. Lưu ý đến các quy tắc như đạo hàm của tổng, hiệu, tích, thương, và đạo hàm của hàm hợp.
Để giải các bài tập trong Mục 2 một cách nhanh chóng và hiệu quả, các em có thể tham khảo một số mẹo sau:
| Công thức | Mô tả |
|---|---|
| logab = c | Định nghĩa logarit |
| loga(b.c) = logab + logac | Logarit của tích |
| loga(b/c) = logab - logac | Logarit của thương |
Hy vọng với hướng dẫn chi tiết này, các em sẽ tự tin hơn trong việc giải các bài tập trong Mục 2 trang 21, 22, 23 SGK Toán 12 tập 2 Cánh Diều. Chúc các em học tập tốt!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập