Tusach.vn xin giới thiệu lời giải chi tiết bài tập 1 trang 102 SGK Toán 12 tập 2 - Cánh diều. Bài tập này thuộc chương trình học Toán 12, tập trung vào việc rèn luyện kỹ năng và kiến thức đã học.
Chúng tôi luôn cố gắng cung cấp những lời giải chính xác, dễ hiểu và phù hợp với trình độ của học sinh.
Cho hai biến cố A, B với \(P\left( B \right) = 0,6;P\left( {A|B} \right) = 0,7\) và \(P\left( {A|\overline B } \right) = 0,4\). Khi đó, \(P\left( A \right)\) bằng A. 0,7. B. 0,4. C. 0,58. D. 0,52.
Đề bài
Cho hai biến cố A, B với \(P\left( B \right) = 0,6;P\left( {A|B} \right) = 0,7\) và \(P\left( {A|\overline B } \right) = 0,4\). Khi đó, \(P\left( A \right)\) bằng
A. 0,7.
B. 0,4.
C. 0,58.
D. 0,52.
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết
Ta có: \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 0,4\).
Theo công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,6.0,7 + 0,4.0,4 = 0,58\).
Chọn C
Bài tập 1 trang 102 SGK Toán 12 tập 2 - Cánh diều là một bài tập quan trọng trong chương trình học Toán 12, tập trung vào việc ôn tập và củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc khảo sát hàm số. Để giúp các em học sinh hiểu rõ hơn về bài tập này, Tusach.vn xin giới thiệu hướng dẫn giải chi tiết và dễ hiểu như sau:
Bài tập 1 yêu cầu học sinh thực hiện các nhiệm vụ sau:
Để giải bài tập này, các em cần nắm vững các kiến thức sau:
Bước 1: Tính đạo hàm của hàm số
Sử dụng các quy tắc tính đạo hàm để tính đạo hàm của hàm số đã cho. Ví dụ, nếu hàm số là f(x) = x2 + 2x + 1, thì đạo hàm của hàm số là f'(x) = 2x + 2.
Bước 2: Xác định các điểm cực trị của hàm số
Giải phương trình f'(x) = 0 để tìm các điểm cực trị của hàm số. Sau đó, sử dụng dấu của đạo hàm cấp hai để xác định loại cực trị (cực đại hoặc cực tiểu).
Bước 3: Khảo sát sự biến thiên của hàm số
Xác định các khoảng đồng biến và nghịch biến của hàm số. Tìm các giới hạn của hàm số tại vô cùng và các điểm gián đoạn. Dựa vào các thông tin này để vẽ được đồ thị hàm số một cách chính xác.
Bước 4: Vẽ đồ thị của hàm số
Sử dụng các thông tin đã thu thập được để vẽ đồ thị của hàm số. Đồ thị hàm số phải thể hiện được các điểm cực trị, các khoảng đồng biến và nghịch biến, và các giới hạn của hàm số.
Giả sử hàm số là f(x) = x3 - 3x2 + 2x. Ta thực hiện các bước sau:
Khi giải bài tập 1 trang 102 SGK Toán 12 tập 2 - Cánh diều, các em cần lưu ý những điều sau:
Hy vọng với hướng dẫn chi tiết này, các em học sinh sẽ hiểu rõ hơn về bài tập 1 trang 102 SGK Toán 12 tập 2 - Cánh diều và có thể tự tin giải bài tập một cách hiệu quả. Chúc các em học tốt!
Tusach.vn luôn đồng hành cùng các em trên con đường chinh phục kiến thức Toán học.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập