Chào mừng các em học sinh đến với lời giải chi tiết bài tập 10 trang 64 SGK Toán 12 tập 2 - Cánh diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em tự tin hơn trong quá trình học tập môn Toán.
Tusach.vn luôn đồng hành cùng các em học sinh, cung cấp tài liệu học tập chất lượng và hỗ trợ giải đáp mọi thắc mắc.
Trong không gian với hệ tọa độ Oxyz, cho hình chóp S.OBCD có đáy là hình chữ nhật và các điểm O(0;0;0), B(2;0;0), D(0;3;0), S(0;0;4) (hình 19) a) Tìm tọa độ điểm C b) Viết phương trình mặt phẳng (SBD) c) Tính khoảng cách từ điểm C đến mặt phẳng (SBD)
Đề bài
Trong không gian với hệ tọa độ Oxyz, cho hình chóp S.OBCD có đáy là hình chữ nhật và các điểm O(0;0;0), B(2;0;0), D(0;3;0), S(0;0;4) (hình 19).

a) Tìm tọa độ điểm C.
b) Viết phương trình mặt phẳng (SBD).
c) Tính khoảng cách từ điểm C đến mặt phẳng (SBD).
Phương pháp giải - Xem chi tiết
a) Quan sát hình vẽ.
b) Tìm cặp vecto chỉ phương của mặt phẳng để tìm vecto pháp tuyến. Sử dụng phương trình tổng quát của mặt phẳng.
c) M(a;b;c), (P): Ax + By + Cz + D = 0. Ta có: \(d(M;(P)) = \frac{{\left| {A.a + B.b + C.c + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
Lời giải chi tiết
a) C(2;3;0).
b) \(\overrightarrow {SB} = (2;0; - 4);\overrightarrow {SD} = (0;3; - 4)\).
Vecto pháp tuyến của mặt phẳng (SBD) là: \(\overrightarrow n = \left[ {\overrightarrow {SB} ;\overrightarrow {SD} } \right] = (12;8;6) = 2(6;4;3)\).
Phương trình mặt phẳng (SBD) là: \(6x + 4y + 3z - 12 = 0\).
c) \(d(C;(SBD)) = \frac{{\left| {6.2 + 4.3 + 3.0 - 12} \right|}}{{\sqrt {{6^2} + {4^2} + {3^2}} }} = \frac{{12\sqrt {61} }}{{61}}\).
Bài tập 10 trang 64 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về Đường thẳng và mặt phẳng trong không gian. Bài tập này thường yêu cầu học sinh vận dụng kiến thức về vị trí tương đối giữa đường thẳng và mặt phẳng, góc giữa đường thẳng và mặt phẳng, và các định lý liên quan để giải quyết.
Bài tập 10 thường có dạng như sau:
Bài tập: Cho đường thẳng d: x = 1 + t, y = 2 - t, z = 3 + 2t và mặt phẳng (P): 2x - y + z - 5 = 0. Xác định vị trí tương đối giữa d và (P).
Lời giải:
Vectơ chỉ phương của d là a = (1, -1, 2). Vectơ pháp tuyến của (P) là n = (2, -1, 1).
Ta có a.n = 1*2 + (-1)*(-1) + 2*1 = 2 + 1 + 2 = 5 ≠ 0. Do đó, đường thẳng d và mặt phẳng (P) cắt nhau.
Để củng cố kiến thức, các em có thể luyện tập thêm các bài tập tương tự trong SGK Toán 12 tập 2 - Cánh diều và các đề thi thử Toán 12. Tusach.vn sẽ tiếp tục cập nhật thêm nhiều bài giải và tài liệu học tập hữu ích khác.
Tusach.vn là website cung cấp tài liệu học tập trực tuyến, giải bài tập và hỗ trợ học sinh, sinh viên trên khắp cả nước. Chúng tôi cam kết mang đến cho các em những tài liệu chất lượng, chính xác và dễ hiểu nhất. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Chủ đề | Liên kết |
|---|---|
| Giải bài tập Toán 12 tập 2 | https://tusach.vn/giai-bai-tap-toan-12-tap-2 |
| Đường thẳng và mặt phẳng trong không gian | https://tusach.vn/duong-thang-va-mat-phang-trong-khong-gian |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập