Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 1 trang 97, 98, 99, 100 SGK Toán 12 tập 2 chương trình Cánh Diều. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và dễ hiểu nhất.
Chúng tôi hiểu rằng việc tự học đôi khi gặp nhiều khó khăn, đặc biệt là với những bài tập phức tạp. Vì vậy, đội ngũ giáo viên giàu kinh nghiệm của tusach.vn đã biên soạn lời giải chi tiết, kèm theo các bước giải rõ ràng, giúp các em nắm vững kiến thức và tự tin làm bài.
Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ra ngẫu nhiên một linh kiện từ dây chuyền lắp ráp đó để kiểm tra. Xác suất để linh kiện được lấy ra đạt tiêu chuẩn là bao nhiêu?
Trả lời câu hỏi Luyện tập 1 trang 99 SGK Toán 12 Cánh diều
Hãy giải bài toán mở đầu bằng cách lập bảng thống kê như trong Ví dụ 2, biết rằng cả hai nhà máy sản xuất được 10 000 linh kiện.
Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ra ngẫu nhiên một linh kiện từ dây chuyền lắp ráp đó để kiểm tra.
Phương pháp giải:
Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết:
Số linh kiện do nhà máy I sản xuất là: \(10\;000.55\% = 5\;500\) (linh kiện).
Số linh kiện do nhà máy II sản xuất là: \(10\;000.45\% = 4\;500\) (linh kiện).
Số linh do nhà máy I sản xuất đạt tiêu chuẩn là:
\(5\;500.90\% = 4\;950\) (linh kiện).
Số linh do nhà máy I sản xuất không đạt tiêu chuẩn là: \(5\;500 - 4\;950 = 550\) (linh kiện).
Số linh do nhà máy II sản xuất đạt tiêu chuẩn là: \(4\;500.87\% = 3\;915\) (linh kiện).
Số linh do nhà máy II sản xuất không đạt tiêu chuẩn là: \(4\;500 - 3\;915 = 585\) (linh kiện).
Ta có bảng thống kê như sau:

Gọi A là biến cố: “Linh kiện lấy ra đạt tiêu chuẩn”, B là biến cố: “Linh kiện lấy ra do nhà máy I sản xuất”. Khi đó, \(P\left( B \right) = 0,55;P\left( {\overline B } \right) = 0,45,P\left( {A|B} \right) = 0,9,P\left( {A|\overline B } \right) = 0,87\).
Theo công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,55.0,9 + 0,45.0,87 = 0,8865\).
Vậy xác suất để linh kiện lấy ra đạt tiêu chuẩn là 0,8865.
Trả lời câu hỏi Hoạt động 1 trang 97 SGK Toán 12 Cánh diều
Một hộp có 24 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 24; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên 1 chiếc thẻ trong hộp. Xét biến cố A: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3” và biến cố B: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 4”.
a) Viết các tập con của không gian mẫu tương ứng với các biến cố A, B, \(A \cap B,A \cap \overline B \) (Hình 2).

b) So sánh n(A) và \(n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right)\). Từ đó, hãy chứng tỏ rằng: \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right)\).
c) So sánh \(P\left( {A \cap B} \right)\) và \(P\left( B \right).P\left( {A|B} \right)\);
\(P\left( {A \cap \overline B } \right)\) và \(P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Từ đó, hãy chứng tỏ rằng: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Phương pháp giải:
+ Sử dụng kiến thức về định nghĩa xác suất có điều kiện để tính: Cho hai biến cố A và B. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, kí hiệu là P(A|B). Nếu \(P\left( B \right) > 0\) thì \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).
+ Sử dụng kiến thức về công thức tính xác suất của hai biến cố xung khắc: Nếu A và B là hai biến cố xung khắc thì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).
Lời giải chi tiết:
a) \(A = \left\{ {3;{\rm{ }}6;{\rm{ }}9;{\rm{ }}12;{\rm{ }}15;{\rm{ }}18;{\rm{ }}21;{\rm{ }}24} \right\},B = \left\{ {4;{\rm{ }}8;{\rm{ }}12;{\rm{ }}16;{\rm{ }}20;{\rm{ }}24} \right\}\), \(\Omega = \left\{ {1;2;3;...;24} \right\}\)\(A \cap B = \left\{ {12;24} \right\},A \cap \overline B = \left\{ {3;6;9;15;18;21} \right\}\).
b) Ta có: \(n\left( A \right) = 8,n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right) = 2 + 6 = 8\) nên \(n\left( A \right) = n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right)\).
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right)}}{{n\left( \Omega \right)}} = \frac{{n\left( {A \cap B} \right)}}{{n\left( \Omega \right)}} + \frac{{n\left( {A \cap \overline B } \right)}}{{n\left( \Omega \right)}} = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right)\)
c) Ta có: \(P\left( B \right).P\left( {A|B} \right) = P\left( B \right).\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = P\left( {A \cap B} \right)\);
\(P\left( {\overline B } \right).P\left( {A|\overline B } \right) = P\left( {\overline B } \right).\frac{{P\left( {A \cap \overline B } \right)}}{{P\left( {\overline B } \right)}} = P\left( {A \cap \overline B } \right)\).
Vì \(A \cap B,A \cap \overline B \) là hai biến cố xung khắc nên \(\left( {A \cap B} \right) \cup \left( {A \cap \overline B } \right) = A\), theo công thức xác suất ta có: \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Trả lời câu hỏi Luyện tập 2 trang 100 SGK Toán 12 Cánh diều
Hãy giải bài toán mở đầu bằng phương pháp sử dụng sơ đồ hình cây như trong Ví dụ 3.
Phương pháp giải:
+ Sử dụng kiến thức sơ đồ hình cây để tính.
+ Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {B|A} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết:
Gọi A là biến cố: “Linh kiện lấy ra đạt tiêu chuẩn”, B là biến cố: “Linh kiện lấy ra do nhà máy I sản xuất”. Khi đó, \(P\left( B \right) = 0,55;P\left( {\overline B } \right) = 0,45,P\left( {A|B} \right) = 0,9,P\left( {A|\overline B } \right) = 0,87\)
Sơ đồ hình cây biểu thị tình huống đã cho:
p
Theo công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {B|A} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,55.0,9 + 0,45.0,87 = 0,8865\).
Vậy xác suất để linh kiện lấy ra đạt tiêu chuẩn là 0,8865.
Trả lời câu hỏi Bài toán mở đầu trang 97 SGK Toán 12 Cánh diều
Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ra ngẫu nhiên một linh kiện từ dây chuyền lắp ráp đó để kiểm tra. Xác suất để linh kiện được lấy ra đạt tiêu chuẩn là bao nhiêu?

Phương pháp giải:
Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết:
Gọi A là biến cố: “Linh kiện lấy ra đạt tiêu chuẩn”, B là biến cố: “Linh kiện lấy ra do nhà máy I sản xuất”. Khi đó, \(P\left( B \right) = 0,55;P\left( {\overline B } \right) = 0,45,P\left( {A|B} \right) = 0,9,P\left( {A|\overline B } \right) = 0,87\)
Theo công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,55.0,9 + 0,45.0,87 = 0,8865\).
Vậy xác suất để linh kiện lấy ra đạt tiêu chuẩn là 0,8865.
Trả lời câu hỏi Bài toán mở đầu trang 97 SGK Toán 12 Cánh diều
Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ra ngẫu nhiên một linh kiện từ dây chuyền lắp ráp đó để kiểm tra. Xác suất để linh kiện được lấy ra đạt tiêu chuẩn là bao nhiêu?

Phương pháp giải:
Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết:
Gọi A là biến cố: “Linh kiện lấy ra đạt tiêu chuẩn”, B là biến cố: “Linh kiện lấy ra do nhà máy I sản xuất”. Khi đó, \(P\left( B \right) = 0,55;P\left( {\overline B } \right) = 0,45,P\left( {A|B} \right) = 0,9,P\left( {A|\overline B } \right) = 0,87\)
Theo công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,55.0,9 + 0,45.0,87 = 0,8865\).
Vậy xác suất để linh kiện lấy ra đạt tiêu chuẩn là 0,8865.
Trả lời câu hỏi Hoạt động 1 trang 97 SGK Toán 12 Cánh diều
Một hộp có 24 chiếc thẻ cùng loại, mỗi thẻ được ghi một trong các số 1, 2, 3, …, 24; hai thẻ khác nhau thì ghi hai số khác nhau. Rút ngẫu nhiên 1 chiếc thẻ trong hộp. Xét biến cố A: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 3” và biến cố B: “Số xuất hiện trên thẻ được rút ra là số chia hết cho 4”.
a) Viết các tập con của không gian mẫu tương ứng với các biến cố A, B, \(A \cap B,A \cap \overline B \) (Hình 2).

b) So sánh n(A) và \(n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right)\). Từ đó, hãy chứng tỏ rằng: \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right)\).
c) So sánh \(P\left( {A \cap B} \right)\) và \(P\left( B \right).P\left( {A|B} \right)\);
\(P\left( {A \cap \overline B } \right)\) và \(P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Từ đó, hãy chứng tỏ rằng: \(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Phương pháp giải:
+ Sử dụng kiến thức về định nghĩa xác suất có điều kiện để tính: Cho hai biến cố A và B. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, kí hiệu là P(A|B). Nếu \(P\left( B \right) > 0\) thì \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).
+ Sử dụng kiến thức về công thức tính xác suất của hai biến cố xung khắc: Nếu A và B là hai biến cố xung khắc thì \(P\left( {A \cup B} \right) = P\left( A \right) + P\left( B \right)\).
Lời giải chi tiết:
a) \(A = \left\{ {3;{\rm{ }}6;{\rm{ }}9;{\rm{ }}12;{\rm{ }}15;{\rm{ }}18;{\rm{ }}21;{\rm{ }}24} \right\},B = \left\{ {4;{\rm{ }}8;{\rm{ }}12;{\rm{ }}16;{\rm{ }}20;{\rm{ }}24} \right\}\), \(\Omega = \left\{ {1;2;3;...;24} \right\}\)\(A \cap B = \left\{ {12;24} \right\},A \cap \overline B = \left\{ {3;6;9;15;18;21} \right\}\).
b) Ta có: \(n\left( A \right) = 8,n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right) = 2 + 6 = 8\) nên \(n\left( A \right) = n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right)\).
\(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{n\left( {A \cap B} \right) + n\left( {A \cap \overline B } \right)}}{{n\left( \Omega \right)}} = \frac{{n\left( {A \cap B} \right)}}{{n\left( \Omega \right)}} + \frac{{n\left( {A \cap \overline B } \right)}}{{n\left( \Omega \right)}} = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right)\)
c) Ta có: \(P\left( B \right).P\left( {A|B} \right) = P\left( B \right).\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = P\left( {A \cap B} \right)\);
\(P\left( {\overline B } \right).P\left( {A|\overline B } \right) = P\left( {\overline B } \right).\frac{{P\left( {A \cap \overline B } \right)}}{{P\left( {\overline B } \right)}} = P\left( {A \cap \overline B } \right)\).
Vì \(A \cap B,A \cap \overline B \) là hai biến cố xung khắc nên \(\left( {A \cap B} \right) \cup \left( {A \cap \overline B } \right) = A\), theo công thức xác suất ta có: \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Trả lời câu hỏi Luyện tập 1 trang 99 SGK Toán 12 Cánh diều
Hãy giải bài toán mở đầu bằng cách lập bảng thống kê như trong Ví dụ 2, biết rằng cả hai nhà máy sản xuất được 10 000 linh kiện.
Dây chuyền lắp ráp ô tô điện gồm các linh kiện là sản phẩm do hai nhà máy sản xuất ra. Số linh kiện nhà máy I sản xuất ra chiếm 55% tổng số linh kiện, số linh kiện nhà máy II sản xuất ra chiếm 45% tổng số linh kiện; tỉ lệ linh kiện đạt tiêu chuẩn của nhà máy I là 90%, của nhà máy II là 87%. Lấy ra ngẫu nhiên một linh kiện từ dây chuyền lắp ráp đó để kiểm tra.
Phương pháp giải:
Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết:
Số linh kiện do nhà máy I sản xuất là: \(10\;000.55\% = 5\;500\) (linh kiện).
Số linh kiện do nhà máy II sản xuất là: \(10\;000.45\% = 4\;500\) (linh kiện).
Số linh do nhà máy I sản xuất đạt tiêu chuẩn là:
\(5\;500.90\% = 4\;950\) (linh kiện).
Số linh do nhà máy I sản xuất không đạt tiêu chuẩn là: \(5\;500 - 4\;950 = 550\) (linh kiện).
Số linh do nhà máy II sản xuất đạt tiêu chuẩn là: \(4\;500.87\% = 3\;915\) (linh kiện).
Số linh do nhà máy II sản xuất không đạt tiêu chuẩn là: \(4\;500 - 3\;915 = 585\) (linh kiện).
Ta có bảng thống kê như sau:

Gọi A là biến cố: “Linh kiện lấy ra đạt tiêu chuẩn”, B là biến cố: “Linh kiện lấy ra do nhà máy I sản xuất”. Khi đó, \(P\left( B \right) = 0,55;P\left( {\overline B } \right) = 0,45,P\left( {A|B} \right) = 0,9,P\left( {A|\overline B } \right) = 0,87\).
Theo công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,55.0,9 + 0,45.0,87 = 0,8865\).
Vậy xác suất để linh kiện lấy ra đạt tiêu chuẩn là 0,8865.
Trả lời câu hỏi Luyện tập 2 trang 100 SGK Toán 12 Cánh diều
Hãy giải bài toán mở đầu bằng phương pháp sử dụng sơ đồ hình cây như trong Ví dụ 3.
Phương pháp giải:
+ Sử dụng kiến thức sơ đồ hình cây để tính.
+ Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {B|A} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết:
Gọi A là biến cố: “Linh kiện lấy ra đạt tiêu chuẩn”, B là biến cố: “Linh kiện lấy ra do nhà máy I sản xuất”. Khi đó, \(P\left( B \right) = 0,55;P\left( {\overline B } \right) = 0,45,P\left( {A|B} \right) = 0,9,P\left( {A|\overline B } \right) = 0,87\)
Sơ đồ hình cây biểu thị tình huống đã cho:
p
Theo công thức xác suất toàn phần ta có:
\(P\left( A \right) = P\left( B \right).P\left( {B|A} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = 0,55.0,9 + 0,45.0,87 = 0,8865\).
Vậy xác suất để linh kiện lấy ra đạt tiêu chuẩn là 0,8865.
Mục 1 của chương trình Toán 12 tập 2 Cánh Diều tập trung vào các kiến thức về Đường thẳng và mặt phẳng trong không gian. Đây là một phần quan trọng, nền tảng cho việc học các kiến thức hình học không gian ở các lớp trên. Việc nắm vững các khái niệm, định lý và phương pháp giải bài tập trong mục này là vô cùng cần thiết để đạt kết quả tốt trong các kỳ thi.
Dưới đây là lời giải chi tiết cho từng bài tập trong mục 1, trang 97, 98, 99, 100 SGK Toán 12 tập 2 Cánh Diều:
Đề bài: (Đề bài cụ thể của bài 1)
Lời giải: (Lời giải chi tiết, bao gồm các bước giải, công thức sử dụng và kết luận)
Đề bài: (Đề bài cụ thể của bài 2)
Lời giải: (Lời giải chi tiết, bao gồm các bước giải, công thức sử dụng và kết luận)
Đề bài: (Đề bài cụ thể của bài 3)
Lời giải: (Lời giải chi tiết, bao gồm các bước giải, công thức sử dụng và kết luận)
Đề bài: (Đề bài cụ thể của bài 4)
Lời giải: (Lời giải chi tiết, bao gồm các bước giải, công thức sử dụng và kết luận)
Tusach.vn cam kết cung cấp cho bạn những lời giải chính xác, dễ hiểu và đầy đủ nhất. Chúng tôi luôn cập nhật kiến thức mới nhất và phương pháp giải bài tập hiệu quả nhất để giúp bạn đạt kết quả tốt nhất trong học tập. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Chương | Bài | Trang |
|---|---|---|
| Chương 6 | Mục 1 | 97-100 |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập