Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 2 trang 16, 17, 18 SGK Toán 12 tập 1 chương trình Cánh Diều. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, cung cấp đáp án chính xác và lời giải dễ hiểu nhất.
Mục tiêu của chúng tôi là giúp các em nắm vững kiến thức, tự tin giải quyết các bài toán và đạt kết quả cao trong môn Toán.
Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số bằng đạo hàm
Trả lời câu hỏi Luyện tập 3 trang 18 SGK Toán 12 Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \sin 2x - 2x\) trên đoạn \(\left[ {\frac{\pi }{2};\frac{{3\pi }}{2}} \right]\).
Phương pháp giải:
B1: Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
B2: Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right),f\left( b \right)\)
B3: So sánh các giá trị tìm được ở bước 2 và kết luận
Lời giải chi tiết:
Ta có: \(f'\left( x \right) = 2\cos 2x - 2\).
Xét \(f'\left( x \right) = 0 \Leftrightarrow x = \pi \).
Ta có \(f\left( {\frac{\pi }{2}} \right) = - \pi ,f\left( \pi \right) = - 2\pi ,f\left( {\frac{{3\pi }}{2}} \right) = - 3\pi \)
Vậy hàm số \(f\left( x \right) = \sin 2x - 2x\) có giá trị nhỏ nhất bằng \( - 3\pi \) khi \(x = \frac{{3\pi }}{2}\) và có giá trị lớn nhất bằng \( - \pi \) khi \(x = \frac{\pi }{2}\) .
Trả lời câu hỏi Hoạt động 3 trang 17SGK Toán 12 Cánh diều
Cho hàm số \(y = f\left( x \right) = 2{x^3} - 6x,x \in \left[ { - 2;2} \right]\) có đồ thị là đường cong ở Hình 9.
a) Dựa vào đồ thị ở Hình 9, hãy cho biết các giá trị \(M = \mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right);m = \mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right)\) bằng bao nhiêu.
b) Giải phương trình \(f'\left( x \right) = 0\) với \(x \in \left( { - 2;2} \right)\)
c) Tính các giá trị của hàm số \(f\left( x \right)\) tại hai đầu mút \( - 2;2\) và tại các điểm \(x \in \left( { - 2;2} \right)\) mà ở đó \(f'\left( x \right) = 0\)
d) So sánh M (hoặc m) với số lớn nhất (hoặc số bé nhất) trong các giá trị tính được ở câu c

Lời giải chi tiết:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = 4\\\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = - 4\end{array} \right.\).
b) Ta có: \(f'\left( x \right) = 6{x^2} - 6\).
Xét \(f'\left( x \right) = 0 \Leftrightarrow x = \pm 1\).
c) Ta có:\(\left\{ \begin{array}{l}f\left( 2 \right) = f\left( { - 1} \right) = 4\\f\left( { - 2} \right) = f\left( 1 \right) = - 4\end{array} \right.\).
d) Nhận xét: \(\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( 2 \right) = f\left( { - 1} \right)\\\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( { - 2} \right) = f\left( 1 \right)\end{array} \right.\).
Trả lời câu hỏi Luyện tập 2 trang 16 SGK Toán 12 Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số \(y = \frac{{2x - 5}}{{x - 1}}\) trên nửa khoảng \((1;3]\).
Phương pháp giải:
B1: Tìm tập xác định của hàm số.
B2: Tính \(y'\). Tìm các điểm mà tại đó \(y' = 0\) hoặc \(y'\) không tồn tại.
B3: Lập bảng biến thiên của hàm số.
B4: Dựa vào bảng biến thiên để kết luận.
Lời giải chi tiết:
Ta có: \(y' = \frac{3}{{{{\left( {x - 1} \right)}^2}}}\).
Nhận xét \(y' > 0{\rm{ }}\forall x \in D\).
Ta có bảng biến thiên:

Vậy hàm số có giá trị lớn nhất bằng \(\frac{1}{2}\) khi \(x = 3\) và không có giá trị nhỏ nhất.
Trả lời câu hỏi Hoạt động 2 trang 16 SGK Toán 12 Cánh diều
Cho hàm số \(f\left( x \right) = x + \frac{1}{{x - 1}}\) với \(x > 1\).
a) Tính \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)\).
b) Lập bảng biến thiên của hàm số \(f\left( x \right)\) trên khoảng \(\left( {1; + \infty } \right)\).
c) Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số \(f\left( x \right)\) trên khoảng \(\left( {1; + \infty } \right)\).
Phương pháp giải:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = + \infty \\\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\)
b) Bảng biến thiên của hàm số trên khoảng \(\left( {1; + \infty } \right)\) là:

c) Hàm số có giá trị nhỏ nhất bằng 3 khi \(x = 2\) và không có giá trị lớn nhất.
Lời giải chi tiết:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = + \infty \\\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\)
b) Bảng biến thiên của hàm số trên khoảng \(\left( {1; + \infty } \right)\) là:

c) Hàm số có giá trị nhỏ nhất bằng 3 khi \(x = 2\) và không có giá trị lớn nhất.
Trả lời câu hỏi Hoạt động 2 trang 16 SGK Toán 12 Cánh diều
Cho hàm số \(f\left( x \right) = x + \frac{1}{{x - 1}}\) với \(x > 1\).
a) Tính \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right),\mathop {\lim }\limits_{x \to + \infty } f\left( x \right)\).
b) Lập bảng biến thiên của hàm số \(f\left( x \right)\) trên khoảng \(\left( {1; + \infty } \right)\).
c) Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số \(f\left( x \right)\) trên khoảng \(\left( {1; + \infty } \right)\).
Phương pháp giải:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = + \infty \\\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\)
b) Bảng biến thiên của hàm số trên khoảng \(\left( {1; + \infty } \right)\) là:

c) Hàm số có giá trị nhỏ nhất bằng 3 khi \(x = 2\) và không có giá trị lớn nhất.
Lời giải chi tiết:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = + \infty \\\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = + \infty \end{array} \right.\)
b) Bảng biến thiên của hàm số trên khoảng \(\left( {1; + \infty } \right)\) là:

c) Hàm số có giá trị nhỏ nhất bằng 3 khi \(x = 2\) và không có giá trị lớn nhất.
Trả lời câu hỏi Luyện tập 2 trang 16 SGK Toán 12 Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất (nếu có) của hàm số \(y = \frac{{2x - 5}}{{x - 1}}\) trên nửa khoảng \((1;3]\).
Phương pháp giải:
B1: Tìm tập xác định của hàm số.
B2: Tính \(y'\). Tìm các điểm mà tại đó \(y' = 0\) hoặc \(y'\) không tồn tại.
B3: Lập bảng biến thiên của hàm số.
B4: Dựa vào bảng biến thiên để kết luận.
Lời giải chi tiết:
Ta có: \(y' = \frac{3}{{{{\left( {x - 1} \right)}^2}}}\).
Nhận xét \(y' > 0{\rm{ }}\forall x \in D\).
Ta có bảng biến thiên:

Vậy hàm số có giá trị lớn nhất bằng \(\frac{1}{2}\) khi \(x = 3\) và không có giá trị nhỏ nhất.
Trả lời câu hỏi Hoạt động 3 trang 17SGK Toán 12 Cánh diều
Cho hàm số \(y = f\left( x \right) = 2{x^3} - 6x,x \in \left[ { - 2;2} \right]\) có đồ thị là đường cong ở Hình 9.
a) Dựa vào đồ thị ở Hình 9, hãy cho biết các giá trị \(M = \mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right);m = \mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right)\) bằng bao nhiêu.
b) Giải phương trình \(f'\left( x \right) = 0\) với \(x \in \left( { - 2;2} \right)\)
c) Tính các giá trị của hàm số \(f\left( x \right)\) tại hai đầu mút \( - 2;2\) và tại các điểm \(x \in \left( { - 2;2} \right)\) mà ở đó \(f'\left( x \right) = 0\)
d) So sánh M (hoặc m) với số lớn nhất (hoặc số bé nhất) trong các giá trị tính được ở câu c

Lời giải chi tiết:
a) Ta có: \(\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = 4\\\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = - 4\end{array} \right.\).
b) Ta có: \(f'\left( x \right) = 6{x^2} - 6\).
Xét \(f'\left( x \right) = 0 \Leftrightarrow x = \pm 1\).
c) Ta có:\(\left\{ \begin{array}{l}f\left( 2 \right) = f\left( { - 1} \right) = 4\\f\left( { - 2} \right) = f\left( 1 \right) = - 4\end{array} \right.\).
d) Nhận xét: \(\left\{ \begin{array}{l}\mathop {\max }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( 2 \right) = f\left( { - 1} \right)\\\mathop {\min }\limits_{\left[ { - 2;2} \right]} f\left( x \right) = f\left( { - 2} \right) = f\left( 1 \right)\end{array} \right.\).
Trả lời câu hỏi Luyện tập 3 trang 18 SGK Toán 12 Cánh diều
Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \sin 2x - 2x\) trên đoạn \(\left[ {\frac{\pi }{2};\frac{{3\pi }}{2}} \right]\).
Phương pháp giải:
B1: Tìm các điểm \({x_1},{x_2},...,{x_n}\) thuộc khoảng \(\left( {a;b} \right)\) mà tại đó hàm số có đạo hàm bằng 0 hoặc không tồn tại.
B2: Tính \(f\left( {{x_1}} \right),f\left( {{x_2}} \right),...,f\left( {{x_n}} \right),f\left( a \right),f\left( b \right)\)
B3: So sánh các giá trị tìm được ở bước 2 và kết luận
Lời giải chi tiết:
Ta có: \(f'\left( x \right) = 2\cos 2x - 2\).
Xét \(f'\left( x \right) = 0 \Leftrightarrow x = \pi \).
Ta có \(f\left( {\frac{\pi }{2}} \right) = - \pi ,f\left( \pi \right) = - 2\pi ,f\left( {\frac{{3\pi }}{2}} \right) = - 3\pi \)
Vậy hàm số \(f\left( x \right) = \sin 2x - 2x\) có giá trị nhỏ nhất bằng \( - 3\pi \) khi \(x = \frac{{3\pi }}{2}\) và có giá trị lớn nhất bằng \( - \pi \) khi \(x = \frac{\pi }{2}\) .
Mục 2 của SGK Toán 12 tập 1 Cánh Diều tập trung vào việc ôn tập về hàm số bậc hai, bao gồm các kiến thức cơ bản về định nghĩa, tính chất, đồ thị và ứng dụng của hàm số này. Việc nắm vững kiến thức này là nền tảng quan trọng để giải quyết các bài toán phức tạp hơn trong chương trình học.
Dưới đây là lời giải chi tiết cho từng bài tập trong mục 2, trang 16, 17, 18 SGK Toán 12 tập 1 Cánh Diều:
Đề bài: Xác định hệ số a, b, c của hàm số y = 2x2 - 5x + 3.
Lời giải:
Đề bài: Vẽ đồ thị hàm số y = x2 - 4x + 3.
Lời giải:
Đề bài: Tìm giá trị lớn nhất của hàm số y = -x2 + 6x - 5.
Lời giải:
Hàm số có dạng y = ax2 + bx + c với a = -1 < 0, nên hàm số đạt giá trị lớn nhất tại đỉnh.
xđỉnh = -b/2a = -6/(2*(-1)) = 3.
yđỉnh = -(3)2 + 6(3) - 5 = 4.
Vậy giá trị lớn nhất của hàm số là 4.
Tusach.vn cung cấp đầy đủ lời giải chi tiết, đáp án chính xác cho tất cả các bài tập trong SGK Toán 12 tập 1 Cánh Diều. Chúng tôi hy vọng rằng với sự hỗ trợ của Tusach.vn, các em sẽ học tập hiệu quả và đạt được kết quả tốt nhất trong môn Toán.
Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập