Chào mừng các em học sinh đến với lời giải chi tiết bài tập 1 trang 85 SGK Toán 12 tập 2 - Cánh diều. Bài viết này sẽ cung cấp đáp án chính xác, phương pháp giải rõ ràng và dễ hiểu, giúp các em tự tin hơn trong quá trình học tập.
Tusach.vn luôn đồng hành cùng các em học sinh, cung cấp tài liệu học tập chất lượng và hỗ trợ tối đa cho việc ôn luyện và làm bài tập.
Tâm của mặt cầu (S): \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 16\) có tọa độ là: A. \(\left( { - 2; - 3;4} \right)\). B. \(\left( {2;3; - 4} \right)\). C. \(\left( {2; - 3; - 4} \right)\). D. \(\left( {2; - 3;4} \right)\).
Đề bài
Tâm của mặt cầu (S): \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 16\) có tọa độ là:
A. \(\left( { - 2; - 3;4} \right)\).
B. \(\left( {2;3; - 4} \right)\).
C. \(\left( {2; - 3; - 4} \right)\).
D. \(\left( {2; - 3;4} \right)\).
Phương pháp giải - Xem chi tiết
Sử dụng kiến thức về phương trình mặt cầu để tìm tọa độ tâm của mặt cầu: Phương trình mặt cầu tâm \(I\left( {a;b;c} \right),\) bán kính R có là: \({\left( {x - a} \right)^2} + {\left( {y - b} \right)^2} + {\left( {z - c} \right)^2} = {R^2}\).
Lời giải chi tiết
Ta có: \({\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z + 4} \right)^2} = 16 \Leftrightarrow {\left( {x - 2} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - \left( { - 4} \right)} \right)^2} = 16\).
Do đó, tâm của mặt cầu (S) có tọa độ \(\left( {2;3; - 4} \right)\).
Chọn B
Bài tập 1 trang 85 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về Đạo hàm. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học nâng cao và các kỳ thi quan trọng như THPT Quốc gia. Bài tập này thường tập trung vào việc vận dụng các công thức và quy tắc đạo hàm để giải quyết các bài toán thực tế.
Bài tập 1 thường bao gồm các dạng bài sau:
Để giúp các em hiểu rõ hơn, chúng ta sẽ đi vào giải chi tiết từng câu hỏi trong bài tập 1:
Cho hàm số y = x3 - 3x2 + 2. Tính đạo hàm y' của hàm số.
Lời giải:
Áp dụng quy tắc đạo hàm của tổng và lũy thừa, ta có:
y' = 3x2 - 6x
Tìm cực trị của hàm số y = x3 - 3x2 + 2.
Lời giải:
Bước 1: Tính đạo hàm y' = 3x2 - 6x
Bước 2: Giải phương trình y' = 0 để tìm điểm dừng: 3x2 - 6x = 0 => x = 0 hoặc x = 2
Bước 3: Lập bảng biến thiên để xác định cực trị:
| x | -∞ | 0 | 2 | +∞ |
|---|---|---|---|---|
| y' | + | - | + | |
| y | ↗ | ↘ | ↗ |
Kết luận: Hàm số đạt cực đại tại x = 0, ymax = 2 và đạt cực tiểu tại x = 2, ymin = -2.
Tusach.vn tự hào là một trong những trang web cung cấp tài liệu học tập Toán 12 uy tín và chất lượng nhất. Chúng tôi luôn cập nhật những lời giải chi tiết, chính xác và dễ hiểu, giúp các em học sinh học tập hiệu quả hơn. Hãy truy cập tusach.vn để khám phá thêm nhiều tài liệu hữu ích khác!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập