Chào mừng các em học sinh đến với lời giải chi tiết bài tập mục 1 trang 28, 29, 30 SGK Toán 12 tập 2 chương trình Cánh diều. Tusach.vn luôn đồng hành cùng các em trong quá trình học tập, giúp các em hiểu rõ kiến thức và tự tin giải quyết các bài toán.
Bài tập trong mục này tập trung vào các kiến thức về đạo hàm của hàm số, bao gồm các dạng bài tập tính đạo hàm, xét tính đơn điệu của hàm số và tìm cực trị.
Tính diện tích hình phẳng
Trả lời câu hỏi Hoạt động 1 trang 28 SGK Toán 12 Cánh diều
Cho hàm số \(y = f(x) = {x^3} - 2{x^2} - x + 2\) có đồ thị minh họa ở Hình 11.

a) Quan sát Hình 11, hãy cho biết các hình phẳng \({H_1},{H_2},{H_3}\) lần lượt được giới hạn bởi các đường thẳng và đồ thị hàm số nào
b) Tính diện tích \({S_{{H_1}}},{S_{{H_2}}},{S_{{H_3}}}\) của các hình phẳng đó
c) Gọi H là tập hợp của các hình phẳng \({H_1},{H_2},{H_3}\). Hình phẳng H được gọi là hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và các đường thẳng x = 0, x = 3. Chứng tỏ rằng diện tích \({S_H}\) của hình phẳng H bằng \({S_H} = {S_{{H_1}}} + {S_{{H_2}}} + {S_{{H_3}}} = \int\limits_0^3 {\left| {f(x)} \right|dx} \)
Phương pháp giải:
a) Quan sát hình vẽ
b) Sử dụng công thức tính diện tích hình phẳng giới hạn bởi đồ thị của các hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b là: \(S = \int\limits_a^b {\left| {f(x)} \right|dx} \)
c) Sử dụng tính chất của tích phân \(\int\limits_a^b {f(x)} dx = \int\limits_a^c {f(x)} dx + \int\limits_c^b {f(x)} dx\)
Lời giải chi tiết:
a) Hình \({H_1}\) được giới hạn bởi các đường thẳng x = 0, x = 1 và đồ thị hàm số y = f(x)
Hình \({H_2}\) được giới hạn bởi các đường thẳng x = 1, x = 2 và đồ thị hàm số y = f(x)
Hình \({H_3}\) được giới hạn bởi các đường thẳng x = 2, x = 3 và đồ thị hàm số y = f(x)
b) \({S_{{H_1}}} = \int\limits_0^1 {f(x)dx} = \int\limits_0^1 {\left( {{x^3} - 2{x^2} - x + 2} \right)dx} = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_0^1 = \frac{{13}}{{12}}\)
\(\int\limits_1^2 {f(x)dx = \int\limits_1^2 {\left( {{x^3} - 2{x^2} - x + 2} \right)} } dx = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_1^2 = - \frac{5}{{12}} \to {S_{{H_2} = }}\frac{5}{{12}}\)
\({S_{{H_3}}} = \int\limits_2^3 {f(x)dx = \int\limits_2^3 {\left( {{x^3} - 2{x^2} - x + 2} \right)} } dx = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_2^3 = \frac{{37}}{{12}}\)
c) \({S_H} = {S_{{H_1}}} + {S_{{H_2}}} + {S_{{H_3}}} = \int\limits_0^1 {f(x)dx} + \left| {\int\limits_1^2 {f(x)dx} } \right| + \int\limits_2^3 {f(x)dx} = \int\limits_0^3 {\left| {f(x)} \right|dx} \)
Trả lời câu hỏi Hoạt động 2 trang 30 SGK Toán 12 Cánh diều
Cho các hàm số \(y = {2^x}\), y = x
Gọi \({S_1}\) là diện tích hình phẳng giới hạn bởi trục Ox, hai đường thẳng x = 1, x = 2 và đồ thị hàm số \(y = {2^x}\)
Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi trục Ox, hai đường thẳng x = 1, x = 2 và đồ thị hàm số y = x
Gọi S là phẳng giới hạn bởi các đồ thị hàm số \(y = {2^x}\), y = x và hai đường thẳng x = 1, x = 2
(Hình 14)

a) Biểu diễn S theo \({S_1},{S_2}\)
b) So sánh S và \(\int\limits_1^2 {({2^x} - x)dx} \)
Phương pháp giải:
Quan sát hình vẽ
Lời giải chi tiết:
a) \(S = {S_1} - {S_2}\)
b) \(S = {S_1} - {S_2}\)
\(\int\limits_1^2 {({2^x} - x)dx} = \int\limits_1^2 {{2^x}dx} - \int\limits_1^2 {xdx} = {S_1} - {S_2}\)
Vậy S = \(\int\limits_1^2 {({2^x} - x)dx} \)
Trả lời câu hỏi Hoạt động 1 trang 28 SGK Toán 12 Cánh diều
Cho hàm số \(y = f(x) = {x^3} - 2{x^2} - x + 2\) có đồ thị minh họa ở Hình 11.

a) Quan sát Hình 11, hãy cho biết các hình phẳng \({H_1},{H_2},{H_3}\) lần lượt được giới hạn bởi các đường thẳng và đồ thị hàm số nào
b) Tính diện tích \({S_{{H_1}}},{S_{{H_2}}},{S_{{H_3}}}\) của các hình phẳng đó
c) Gọi H là tập hợp của các hình phẳng \({H_1},{H_2},{H_3}\). Hình phẳng H được gọi là hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành và các đường thẳng x = 0, x = 3. Chứng tỏ rằng diện tích \({S_H}\) của hình phẳng H bằng \({S_H} = {S_{{H_1}}} + {S_{{H_2}}} + {S_{{H_3}}} = \int\limits_0^3 {\left| {f(x)} \right|dx} \)
Phương pháp giải:
a) Quan sát hình vẽ
b) Sử dụng công thức tính diện tích hình phẳng giới hạn bởi đồ thị của các hàm số y = f(x), trục hoành và hai đường thẳng x = a, x = b là: \(S = \int\limits_a^b {\left| {f(x)} \right|dx} \)
c) Sử dụng tính chất của tích phân \(\int\limits_a^b {f(x)} dx = \int\limits_a^c {f(x)} dx + \int\limits_c^b {f(x)} dx\)
Lời giải chi tiết:
a) Hình \({H_1}\) được giới hạn bởi các đường thẳng x = 0, x = 1 và đồ thị hàm số y = f(x)
Hình \({H_2}\) được giới hạn bởi các đường thẳng x = 1, x = 2 và đồ thị hàm số y = f(x)
Hình \({H_3}\) được giới hạn bởi các đường thẳng x = 2, x = 3 và đồ thị hàm số y = f(x)
b) \({S_{{H_1}}} = \int\limits_0^1 {f(x)dx} = \int\limits_0^1 {\left( {{x^3} - 2{x^2} - x + 2} \right)dx} = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_0^1 = \frac{{13}}{{12}}\)
\(\int\limits_1^2 {f(x)dx = \int\limits_1^2 {\left( {{x^3} - 2{x^2} - x + 2} \right)} } dx = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_1^2 = - \frac{5}{{12}} \to {S_{{H_2} = }}\frac{5}{{12}}\)
\({S_{{H_3}}} = \int\limits_2^3 {f(x)dx = \int\limits_2^3 {\left( {{x^3} - 2{x^2} - x + 2} \right)} } dx = \left. {\left( {\frac{{{x^4}}}{4} - \frac{2}{3}{x^3} - \frac{{{x^2}}}{2} + 2x} \right)} \right|_2^3 = \frac{{37}}{{12}}\)
c) \({S_H} = {S_{{H_1}}} + {S_{{H_2}}} + {S_{{H_3}}} = \int\limits_0^1 {f(x)dx} + \left| {\int\limits_1^2 {f(x)dx} } \right| + \int\limits_2^3 {f(x)dx} = \int\limits_0^3 {\left| {f(x)} \right|dx} \)
Trả lời câu hỏi Hoạt động 2 trang 30 SGK Toán 12 Cánh diều
Cho các hàm số \(y = {2^x}\), y = x
Gọi \({S_1}\) là diện tích hình phẳng giới hạn bởi trục Ox, hai đường thẳng x = 1, x = 2 và đồ thị hàm số \(y = {2^x}\)
Gọi \({S_2}\) là diện tích hình phẳng giới hạn bởi trục Ox, hai đường thẳng x = 1, x = 2 và đồ thị hàm số y = x
Gọi S là phẳng giới hạn bởi các đồ thị hàm số \(y = {2^x}\), y = x và hai đường thẳng x = 1, x = 2
(Hình 14)

a) Biểu diễn S theo \({S_1},{S_2}\)
b) So sánh S và \(\int\limits_1^2 {({2^x} - x)dx} \)
Phương pháp giải:
Quan sát hình vẽ
Lời giải chi tiết:
a) \(S = {S_1} - {S_2}\)
b) \(S = {S_1} - {S_2}\)
\(\int\limits_1^2 {({2^x} - x)dx} = \int\limits_1^2 {{2^x}dx} - \int\limits_1^2 {xdx} = {S_1} - {S_2}\)
Vậy S = \(\int\limits_1^2 {({2^x} - x)dx} \)
Mục 1 trang 28, 29, 30 SGK Toán 12 tập 2 Cánh diều là một phần quan trọng trong chương trình học, tập trung vào việc củng cố kiến thức về đạo hàm và ứng dụng của đạo hàm trong việc giải quyết các bài toán thực tế. Để giúp các em học sinh nắm vững kiến thức và tự tin làm bài, tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho từng bài tập trong mục này.
Bài 1: Để tính đạo hàm của các hàm số, chúng ta sử dụng các quy tắc đạo hàm cơ bản như quy tắc đạo hàm của tổng, tích, thương và quy tắc đạo hàm của hàm hợp.
Ví dụ, để tính đạo hàm của hàm số y = x3 - 3x2 + 2x - 5, ta áp dụng quy tắc đạo hàm của tổng và quy tắc đạo hàm của lũy thừa:
y' = 3x2 - 6x + 2
Bài 2: Để tìm đạo hàm của hàm số y = sin(2x + 1), ta sử dụng quy tắc đạo hàm của hàm hợp:
y' = cos(2x + 1) * 2 = 2cos(2x + 1)
Bài 3: Để tìm các điểm cực trị của hàm số y = x4 - 4x3 + 4x2 + 1, ta thực hiện các bước sau:
Bài 4: Để khảo sát sự biến thiên và vẽ đồ thị của hàm số y = x3 - 3x + 2, ta thực hiện các bước sau:
Để học tốt môn Toán 12, các em cần:
Tusach.vn hy vọng rằng với lời giải chi tiết và hướng dẫn giải bài tập này, các em sẽ học tập tốt hơn và đạt kết quả cao trong môn Toán 12.
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập