Tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 2 trang 100, 101 sách giáo khoa Toán 12 tập 2 chương trình Cánh diều. Bài giải này được biên soạn bởi đội ngũ giáo viên giàu kinh nghiệm, đảm bảo tính chính xác và giúp học sinh nắm vững kiến thức.
Chúng tôi luôn cố gắng cung cấp những tài liệu học tập tốt nhất để hỗ trợ các em học sinh học tập hiệu quả.
Xét hai biến cố A, B trong Hoạt động 1. a) Tính P(A), P(B), \(P\left( {A|B} \right)\) và \(P\left( {B|A} \right)\). b) So sánh: \(P\left( {B|A} \right)\) và \(\frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Trả lời câu hỏi Hoạt động 2 trang 100 SGK Toán 12 Cánh diều
Xét hai biến cố A, B trong Hoạt động 1.
a) Tính P(A), P(B), \(P\left( {A|B} \right)\) và \(P\left( {B|A} \right)\).
b) So sánh: \(P\left( {B|A} \right)\) và \(\frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Phương pháp giải:
Sử dụng kiến thức về định nghĩa xác suất có điều kiện để tính: Cho hai biến cố A và B. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, kí hiệu là P(A|B). Nếu \(P\left( B \right) > 0\) thì \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết:
a) Ta có: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{8}{{24}} = \frac{1}{3};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{6}{{24}} = \frac{1}{4}\);
\(P\left( {A|B} \right) = \frac{{n\left( {A \cap B} \right)}}{{n\left( B \right)}} = \frac{2}{6} = \frac{1}{3};P\left( {B|A} \right) = \frac{{n\left( {A \cap B} \right)}}{{n\left( A \right)}} = \frac{2}{8} = \frac{1}{4}\).
b) Ta có: \(\frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{4}.\frac{1}{3}}}{{\frac{1}{3}}} = \frac{1}{4} = P\left( {B|A} \right)\).
Trả lời câu hỏi Luyện tập 3 trang 101 SGK Toán 12 Cánh diều
Cho hai biến cố A, B sao cho \(P\left( A \right) = 0,4,P\left( B \right) = 0,8;P\left( {B|A} \right) = 0,3.\) Tính \(P\left( {A|B} \right)\).
Phương pháp giải:
Sử dụng kiến thức về công thức Bayes để tính: Với hai biến cố A, B mà \(P\left( A \right) > 0,P\left( B \right) > 0\), ta có: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Lời giải chi tiết:
Theo công thức Bayes ta có: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,4.0,3}}{{0,8}} = 0,15\).
Trả lời câu hỏi Hoạt động 2 trang 100 SGK Toán 12 Cánh diều
Xét hai biến cố A, B trong Hoạt động 1.
a) Tính P(A), P(B), \(P\left( {A|B} \right)\) và \(P\left( {B|A} \right)\).
b) So sánh: \(P\left( {B|A} \right)\) và \(\frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Phương pháp giải:
Sử dụng kiến thức về định nghĩa xác suất có điều kiện để tính: Cho hai biến cố A và B. Xác suất của biến cố A với điều kiện biến cố B đã xảy ra được gọi là xác suất của A với điều kiện B, kí hiệu là P(A|B). Nếu \(P\left( B \right) > 0\) thì \(P\left( {A|B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}}\).
Lời giải chi tiết:
a) Ta có: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{8}{{24}} = \frac{1}{3};P\left( B \right) = \frac{{n\left( B \right)}}{{n\left( \Omega \right)}} = \frac{6}{{24}} = \frac{1}{4}\);
\(P\left( {A|B} \right) = \frac{{n\left( {A \cap B} \right)}}{{n\left( B \right)}} = \frac{2}{6} = \frac{1}{3};P\left( {B|A} \right) = \frac{{n\left( {A \cap B} \right)}}{{n\left( A \right)}} = \frac{2}{8} = \frac{1}{4}\).
b) Ta có: \(\frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{4}.\frac{1}{3}}}{{\frac{1}{3}}} = \frac{1}{4} = P\left( {B|A} \right)\).
Trả lời câu hỏi Luyện tập 3 trang 101 SGK Toán 12 Cánh diều
Cho hai biến cố A, B sao cho \(P\left( A \right) = 0,4,P\left( B \right) = 0,8;P\left( {B|A} \right) = 0,3.\) Tính \(P\left( {A|B} \right)\).
Phương pháp giải:
Sử dụng kiến thức về công thức Bayes để tính: Với hai biến cố A, B mà \(P\left( A \right) > 0,P\left( B \right) > 0\), ta có: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
Lời giải chi tiết:
Theo công thức Bayes ta có: \(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{0,4.0,3}}{{0,8}} = 0,15\).
Trả lời câu hỏi Luyện tập 4 trang 101 SGK Toán 12 Cánh diều
Được biết có 5% đàn ông bị mù màu, và 0,25% phụ nữ bị mù màu (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Giả sử số đàn ông bằng số phụ nữ. Chọn một người bị mù màu một cách ngẫu nhiên. Hỏi xác suất để người đó là đàn ông là bao nhiêu?
Phương pháp giải:
+ Sử dụng kiến thức về công thức Bayes để tính: Với hai biến cố A, B mà \(P\left( A \right) > 0,P\left( B \right) > 0\), ta có: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
+ Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết:
Xét hai biến cố: A: “Người được chọn là đàn ông”, B: “Người được chọn bị mù màu”.
Khi đó, ta có: \(P\left( A \right) = P\left( {\overline A } \right) = 0,5,P\left( {B|A} \right) = 0,05,P\left( {B|\overline A } \right) = 0,0025\).
Theo công thức Bayes ta có, xác suất để một người mù màu được chọn là đàn ông là:
\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\)\( = \frac{{0,5.0,05}}{{0,5.0,05 + 0,5.0,0025}} \approx 0,9524\).
Trả lời câu hỏi Luyện tập 4 trang 101 SGK Toán 12 Cánh diều
Được biết có 5% đàn ông bị mù màu, và 0,25% phụ nữ bị mù màu (Nguồn: F. M. Dekking et al., A modern introduction to probability and statistics – Understanding why and how, Springer, 2005). Giả sử số đàn ông bằng số phụ nữ. Chọn một người bị mù màu một cách ngẫu nhiên. Hỏi xác suất để người đó là đàn ông là bao nhiêu?
Phương pháp giải:
+ Sử dụng kiến thức về công thức Bayes để tính: Với hai biến cố A, B mà \(P\left( A \right) > 0,P\left( B \right) > 0\), ta có: \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}}\).
+ Sử dụng kiến thức về công thức xác suất toàn phần để tính: Cho hai biến cố A và B với \(0 < P\left( B \right) < 1\), ta có \(P\left( A \right) = P\left( {A \cap B} \right) + P\left( {A \cap \overline B } \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right)\).
Lời giải chi tiết:
Xét hai biến cố: A: “Người được chọn là đàn ông”, B: “Người được chọn bị mù màu”.
Khi đó, ta có: \(P\left( A \right) = P\left( {\overline A } \right) = 0,5,P\left( {B|A} \right) = 0,05,P\left( {B|\overline A } \right) = 0,0025\).
Theo công thức Bayes ta có, xác suất để một người mù màu được chọn là đàn ông là:
\(P\left( {A|B} \right) = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( B \right)}} = \frac{{P\left( A \right).P\left( {B|A} \right)}}{{P\left( A \right).P\left( {B|A} \right) + P\left( {\overline A } \right).P\left( {B|\overline A } \right)}}\)\( = \frac{{0,5.0,05}}{{0,5.0,05 + 0,5.0,0025}} \approx 0,9524\).
Mục 2 trang 100, 101 SGK Toán 12 tập 2 - Cánh diều thuộc chương trình học về Đường thẳng và mặt phẳng trong không gian. Đây là một phần kiến thức quan trọng, nền tảng cho các chương trình học nâng cao và các bài thi quan trọng như THPT Quốc gia. Bài viết này sẽ cung cấp lời giải chi tiết, dễ hiểu cho từng bài tập trong mục này, giúp các em học sinh hiểu rõ lý thuyết và rèn luyện kỹ năng giải bài tập.
Mục 2 tập trung vào việc ôn tập và củng cố kiến thức về:
Dưới đây là lời giải chi tiết cho các bài tập trong mục 2 trang 100, 101 SGK Toán 12 tập 2 - Cánh diều:
Đề bài: (Giả định đề bài cụ thể ở đây)
Lời giải: (Giải chi tiết bài tập, bao gồm các bước thực hiện, lý luận và kết luận. Sử dụng các công thức và định lý liên quan.)
Đề bài: (Giả định đề bài cụ thể ở đây)
Lời giải: (Giải chi tiết bài tập, bao gồm các bước thực hiện, lý luận và kết luận. Sử dụng các công thức và định lý liên quan.)
Đề bài: (Giả định đề bài cụ thể ở đây)
Lời giải: (Giải chi tiết bài tập, bao gồm các bước thực hiện, lý luận và kết luận. Sử dụng các công thức và định lý liên quan.)
Để giải các bài tập về đường thẳng và mặt phẳng trong không gian một cách hiệu quả, các em cần:
Kiến thức về đường thẳng và mặt phẳng trong không gian có ứng dụng rộng rãi trong nhiều lĩnh vực của đời sống và kỹ thuật, như:
Tusach.vn hy vọng rằng bài viết này sẽ giúp các em học sinh hiểu rõ hơn về Mục 2 trang 100, 101 SGK Toán 12 tập 2 - Cánh diều và đạt kết quả tốt trong học tập. Chúc các em thành công!
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập