Tusach.vn xin giới thiệu lời giải chi tiết và dễ hiểu cho mục 2 trang 61, 62, 63, 64, 65 của Chuyên đề học tập Toán 11 - Chân trời sáng tạo. Bài giải được trình bày rõ ràng, logic, giúp học sinh dễ dàng nắm bắt kiến thức và rèn luyện kỹ năng giải toán.
Chúng tôi luôn cập nhật nhanh chóng và chính xác các lời giải bài tập Toán 11 Chân trời sáng tạo, đảm bảo hỗ trợ tối đa cho quá trình học tập của bạn.
Cho đồ thị có trọng số như Hình 6.
Cho đồ thị có trọng số như Hình 6.

a) Tìm tất cả các đường đi từ A đến T (đi qua mỗi đỉnh nhiều nhất một lần) và tính độ dài của mỗi đường đi đó.
b) Từ đó, tìm đường đi ngắn nhất từ A đến T.
Phương pháp giải:
Quan sát hình 6 để trả lời
Lời giải chi tiết:
a) Tất cả các đường đi từ A đến T (đi qua mỗi đỉnh nhiều nhất một lần) là: ABDT, ACDT, ACET, ACDET, ACEDT, ABDET, ABDCET.
Ta có:
\({l_{ABDT}}\; = {\rm{ }}{w_{AB}}\; + {\rm{ }}{w_{BD}}\; + {\rm{ }}{w_{DT}}\; = {\rm{ }}4{\rm{ }} + {\rm{ }}7{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}14;\)
\(\begin{array}{l}{l_{ACDT}}\; = {\rm{ }}{w_{AC}}\; + {\rm{ }}{w_{CD}}\; + {\rm{ }}{w_{DT}}\; = {\rm{ }}2{\rm{ }} + {\rm{ }}6{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}11;\\\begin{array}{*{20}{l}}{{l_{ACET}}\; = {\rm{ }}{w_{AC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{ET}}\; = {\rm{ }}2{\rm{ }} + {\rm{ }}12{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}19;}\\{{l_{ACDET}}\; = {\rm{ }}{w_{AC}}\; + {\rm{ }}{w_{CD}}\; + {\rm{ }}{w_{DE}}\; + {\rm{ }}{w_{ET}}\; = {\rm{ }}2{\rm{ }} + {\rm{ }}6{\rm{ }} + {\rm{ }}4{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}17;}\\{{l_{ACEDT}}\; = {\rm{ }}{w_{AC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{ED}}\; + {\rm{ }}{w_{DT}}\; = {\rm{ }}2{\rm{ }} + {\rm{ }}12{\rm{ }} + {\rm{ }}4{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}21;}\\{{l_{ABDET}}\; = {\rm{ }}{w_{AB}}\; + {\rm{ }}{w_{BD}}\; + {\rm{ }}{w_{DE}}\; + {\rm{ }}{w_{ET}}\; = {\rm{ }}4{\rm{ }} + {\rm{ }}7{\rm{ }} + {\rm{ }}4{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}20;}\\{{l_{ABDCET}}\; = {\rm{ }}{w_{AB}}\; + {\rm{ }}{w_{BD}}\; + {\rm{ }}{w_{DC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{ET}}\; = {\rm{ }}4{\rm{ }} + {\rm{ }}7{\rm{ }} + {\rm{ }}6{\rm{ }} + {\rm{ }}12{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}34.}\end{array}\end{array}\)
b) Vì \(11{\rm{ }} < {\rm{ }}14{\rm{ }} < {\rm{ }}17{\rm{ }} < {\rm{ }}19{\rm{ }} < {\rm{ }}20{\rm{ }} < {\rm{ }}21{\rm{ }} < {\rm{ }}34.\)
Nên \({l_{ACDT}}\; < {\rm{ }}{l_{ABDT}}\; < {\rm{ }}{l_{ACDET}}\; < {\rm{ }}{l_{ACET}}\; < {\rm{ }}{l_{ABDET}}\; < {\rm{ }}{l_{ACEDT}}\; < {\rm{ }}{l_{ABDCET}}.\)
Vậy đường đi ngắn nhất từ A đến T là ACDT (có độ dài bằng 11).
Trong đồ thị có trọng số ở Hình 15, mỗi cạnh biểu diễn một tuyến xe buýt giữa hai bến trong các bến xe A, B, C, D, E và F, trọng số của mỗi cạnh biểu diễn thời gian tính bằng giờ của tuyến xe buýt tương ứng. Một người cần ít nhất bao nhiêu thời gian để di chuyển từ bến A đến bến C bằng xe buýt của các tuyến trên? Biết rằng thời gian tại bến để chuyển tiếp từ tuyến này qua tuyến kia là không đáng kể.

Phương pháp giải:
Đường đi có độ dài ngắn nhất trong các đường đi từ đỉnh A đến đỉnh C gọi là đường đi ngắn nhất từ A đến C.
Lời giải chi tiết:
Ta tìm khoảng thời gian ít nhất để di chuyển từ bến A đến bến C bằng xe buýt của các tuyến trên bằng cách sử dụng thuật toán Dijkstra như sau:

– Gán nhãn cho A bằng 0 (tức là, \({n_A}\; = {\rm{ }}0\)), các đỉnh khác bằng \(\infty \). Khoanh tròn đỉnh A.
– Tại các đỉnh kề với đỉnh A, gồm E, F, B, ta có:
⦁ \({n_E}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AE}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}0,8{\rm{ }} = {\rm{ }}0,8\).Vì \(0,8{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của E thành 0,8.
⦁ \({n_F}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AF}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}2,5{\rm{ }} = {\rm{ }}2,5\).Vì \(2,5{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của F thành 2,5.
\({n_B}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AB}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}2\).Vì \(2{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của B thành 2.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là E nên ta khoanh tròn đỉnh E (đỉnh gần đỉnh A nhất, chỉ tính các đỉnh khác đỉnh A).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh E gồm D, F, ta có:
⦁ \({n_D}\; = {\rm{ }}{n_E}\; + {\rm{ }}{w_{DE}}\; = {\rm{ }}0,8{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}3,8\).Vì \(3,8{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của D thành 3,8.
⦁ \({n_F}\; = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EF}}\; = {\rm{ }}0,8{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}1,8\).Vì \(1,8{\rm{ }} < {\rm{ }}2,5\) (2,5 là nhãn hiện tại của F) nên ta đổi nhãn của F thành 1,8.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là F nên ta khoanh tròn đỉnh F (đỉnh gần A thứ hai).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh F gồm B, C, D, ta có:
⦁ \({n_B}\; = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FB}}\; = {\rm{ }}1,8{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}3,8\).Vì \(3,8{\rm{ }} > {\rm{ }}2\) (2 là nhãn hiện tại của B) nên ta giữ nguyên nhãn của B là 2.
⦁ \({n_C}\; = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FC}}\; = {\rm{ }}1,8{\rm{ }} + {\rm{ }}2,2{\rm{ }} = {\rm{ }}4\).Vì \(4{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của C thành 4.
⦁ \({n_D}\; = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FD}}\; = {\rm{ }}1,8{\rm{ }} + {\rm{ }}1,2{\rm{ }} = {\rm{ }}3\).Vì \(3{\rm{ }} < {\rm{ }}3,8\) (3,8 là nhãn hiện tại của D) nên ta đổi nhãn của D thành 3.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B. Nhưng do trong các đỉnh chưa được khoanh tròn còn lại, ta thấy không có đỉnh nào kề với đỉnh B nên ta chọn lại đỉnh có nhãn bé nhất (ngoại trừ đỉnh B) là đỉnh D (đỉnh gần A thứ ba).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh D chỉ còn đỉnh C, ta có:
\({n_C}\; = {\rm{ }}{n_D}\; + {\rm{ }}{w_{DC}}\; = {\rm{ }}3{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}6\).Vì \(6{\rm{ }} > {\rm{ }}4\) (4 là nhãn hiện tại của C) nên ta giữ nguyên nhãn của C là 4.
Lúc này, ngoại trừ đỉnh B, ta thấy chỉ còn đỉnh C chưa được khoanh tròn nên ta khoanh tròn đỉnh C (đỉnh gần A thứ tư).
– Nhìn ngược lại các bước trên, ta thấy:
\(\begin{array}{*{20}{l}}{{n_C}\; = {\rm{ }}4{\rm{ }} = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EF}}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AE}}\; + {\rm{ }}{w_{EF}}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{w_{AE}}\; + {\rm{ }}{w_{EF}}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{l_{AEFC}}.}\end{array}\)
Vậy người đó cần ít nhất 4 giờ để di chuyển từ bến A đến bến C bằng xe buýt của các tuyến trên.
Tìm đường đi ngắn nhất từ đỉnh A đến đỉnh I trong đồ thị có trọng số ở Hình 14.

Phương pháp giải:
Tổng trọng số (hay độ dài) của các cạnh tạo thành đường đi gọi là độ dài của đường đi đó. Độ dài đường đi m kí hiệu là \({l_m}\). Đường đi có độ dài ngắn nhất trong các đường đi từ đỉnh A đến đỉnh B gọi là đường đi ngắn nhất từ A đến B
Lời giải chi tiết:

– Gán nhãn cho A bằng 0 (tức là, nA = 0), các đỉnh khác bằng ∞. Khoanh tròn đỉnh A.
– Tại các đỉnh kề với A, gồm B, C, D, ta có:
⦁ \({n_B}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AB}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}3\).Vì \(3{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của B thành 3.
⦁ \({n_C}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AC}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}6\).Vì \({\rm{6 }} < {\rm{ }}\infty \) nên ta đổi nhãn của C thành 6.
⦁ \({n_D}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AD}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}5\).Vì \({\rm{5 }} < {\rm{ }}\infty \) nên ta đổi nhãn của D thành 5.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B nên ta khoanh tròn đỉnh B (đỉnh gần đỉnh A nhất, chỉ tính các đỉnh khác đỉnh A).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh B gồm C, E, ta có:
⦁ \({n_C}\; = {\rm{ }}{n_B}\; + {\rm{ }}{w_{BC}}\; = {\rm{ }}3{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}5\).Vì \(5{\rm{ }} < {\rm{ }}6\) (6 là nhãn hiện tại của C) nên ta đổi nhãn của C thành 5.
⦁ \({n_E}\; = {\rm{ }}{n_B}\; + {\rm{ }}{w_{BE}}\; = {\rm{ }}3{\rm{ }} + {\rm{ }}10{\rm{ }} = {\rm{ }}13\) .Vì \(13{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của E thành 13.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là C, D (đều có nhãn là 5) nên ta tùy ý khoanh tròn đỉnh C (đỉnh gần đỉnh A thứ hai).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh C gồm E, D, F, I, ta có:
⦁ \({n_E}\; = {\rm{ }}{n_C}\; + {\rm{ }}{w_{CE}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}10\).Vì \(10{\rm{ }} < {\rm{ }}13\) (13 là nhãn hiện tại của E) nên ta đổi nhãn của E thành 10.
⦁ \({n_D}\; = {\rm{ }}{n_C}\; + {\rm{ }}{w_{CD}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}8\) .Vì \(8{\rm{ }} > {\rm{ }}5\) (5 là nhãn hiện tại của D) nên ta giữ nguyên nhãn của D là 5.
⦁ \({n_F}\; = {\rm{ }}{n_C}\; + {\rm{ }}{w_{CF}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}11\).Vì \(11{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của F thành 11.
⦁ \({n_I}\; = {\rm{ }}{n_C}\; + {\rm{ }}{w_{CI}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}8{\rm{ }} = {\rm{ }}13\).Vì \(13{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của I thành 13.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là D nên ta khoanh tròn đỉnh D (đỉnh gần đỉnh A thứ ba).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh D chỉ có đỉnh F, ta có:
\({n_F}\; = {\rm{ }}{n_D}\; + {\rm{ }}{w_{DF}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}7{\rm{ }} = {\rm{ }}12.\)
Vì \(12{\rm{ }} > {\rm{ }}11\) (11 là nhãn hiện tại của F) nên ta giữ nguyên nhãn của F là 11.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là E nên ta khoanh tròn đỉnh E (đỉnh gần đỉnh A thứ tư).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh E chỉ có đỉnh I, ta có:
\({n_I}\; = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EI}}\; = {\rm{ }}10{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}12.\)
Vì \(12{\rm{ }} < {\rm{ }}13\) (13 là nhãn hiện tại của I) nên ta đổi nhãn của I thành 12.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là F nên ta khoanh tròn đỉnh F (đỉnh gần A thứ năm).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh F chỉ còn đỉnh I, ta có:
\({n_I}\; = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FI}}\; = {\rm{ }}11{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}15.\)
Vì \(15{\rm{ }} > {\rm{ }}12\) (12 là nhãn hiện tại của I) nên ta giữ nguyên nhãn của I là 12.
Lúc này, ta thấy chỉ còn đỉnh I chưa được khoanh tròn nên ta khoanh tròn đỉnh I (đỉnh gần A thứ sáu).
– Nhìn ngược lại các bước trên, ta thấy:
\(\begin{array}{l}{n_I}\; = {\rm{ }}12{\rm{ }} = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EI}} = {\rm{ }}{n_C}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{EI}}\\ = {\rm{ }}{n_B}\; + {\rm{ }}{w_{BC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{EI}}\\ = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AB}}\; + {\rm{ }}{w_{BC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{EI}}\\ = {\rm{ }}{w_{AB}}\; + {\rm{ }}{w_{BC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{EI}} = {\rm{ }}{l_{ABCEI}}.\end{array}\)
Vậy ABCEI là đường đi ngắn nhất từ A đến I, với độ dài bằng 12.
Cho đồ thị có trọng số như Hình 6.

a) Tìm tất cả các đường đi từ A đến T (đi qua mỗi đỉnh nhiều nhất một lần) và tính độ dài của mỗi đường đi đó.
b) Từ đó, tìm đường đi ngắn nhất từ A đến T.
Phương pháp giải:
Quan sát hình 6 để trả lời
Lời giải chi tiết:
a) Tất cả các đường đi từ A đến T (đi qua mỗi đỉnh nhiều nhất một lần) là: ABDT, ACDT, ACET, ACDET, ACEDT, ABDET, ABDCET.
Ta có:
\({l_{ABDT}}\; = {\rm{ }}{w_{AB}}\; + {\rm{ }}{w_{BD}}\; + {\rm{ }}{w_{DT}}\; = {\rm{ }}4{\rm{ }} + {\rm{ }}7{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}14;\)
\(\begin{array}{l}{l_{ACDT}}\; = {\rm{ }}{w_{AC}}\; + {\rm{ }}{w_{CD}}\; + {\rm{ }}{w_{DT}}\; = {\rm{ }}2{\rm{ }} + {\rm{ }}6{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}11;\\\begin{array}{*{20}{l}}{{l_{ACET}}\; = {\rm{ }}{w_{AC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{ET}}\; = {\rm{ }}2{\rm{ }} + {\rm{ }}12{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}19;}\\{{l_{ACDET}}\; = {\rm{ }}{w_{AC}}\; + {\rm{ }}{w_{CD}}\; + {\rm{ }}{w_{DE}}\; + {\rm{ }}{w_{ET}}\; = {\rm{ }}2{\rm{ }} + {\rm{ }}6{\rm{ }} + {\rm{ }}4{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}17;}\\{{l_{ACEDT}}\; = {\rm{ }}{w_{AC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{ED}}\; + {\rm{ }}{w_{DT}}\; = {\rm{ }}2{\rm{ }} + {\rm{ }}12{\rm{ }} + {\rm{ }}4{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}21;}\\{{l_{ABDET}}\; = {\rm{ }}{w_{AB}}\; + {\rm{ }}{w_{BD}}\; + {\rm{ }}{w_{DE}}\; + {\rm{ }}{w_{ET}}\; = {\rm{ }}4{\rm{ }} + {\rm{ }}7{\rm{ }} + {\rm{ }}4{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}20;}\\{{l_{ABDCET}}\; = {\rm{ }}{w_{AB}}\; + {\rm{ }}{w_{BD}}\; + {\rm{ }}{w_{DC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{ET}}\; = {\rm{ }}4{\rm{ }} + {\rm{ }}7{\rm{ }} + {\rm{ }}6{\rm{ }} + {\rm{ }}12{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}34.}\end{array}\end{array}\)
b) Vì \(11{\rm{ }} < {\rm{ }}14{\rm{ }} < {\rm{ }}17{\rm{ }} < {\rm{ }}19{\rm{ }} < {\rm{ }}20{\rm{ }} < {\rm{ }}21{\rm{ }} < {\rm{ }}34.\)
Nên \({l_{ACDT}}\; < {\rm{ }}{l_{ABDT}}\; < {\rm{ }}{l_{ACDET}}\; < {\rm{ }}{l_{ACET}}\; < {\rm{ }}{l_{ABDET}}\; < {\rm{ }}{l_{ACEDT}}\; < {\rm{ }}{l_{ABDCET}}.\)
Vậy đường đi ngắn nhất từ A đến T là ACDT (có độ dài bằng 11).
Tìm đường đi ngắn nhất từ đỉnh A đến đỉnh I trong đồ thị có trọng số ở Hình 14.

Phương pháp giải:
Tổng trọng số (hay độ dài) của các cạnh tạo thành đường đi gọi là độ dài của đường đi đó. Độ dài đường đi m kí hiệu là \({l_m}\). Đường đi có độ dài ngắn nhất trong các đường đi từ đỉnh A đến đỉnh B gọi là đường đi ngắn nhất từ A đến B
Lời giải chi tiết:

– Gán nhãn cho A bằng 0 (tức là, nA = 0), các đỉnh khác bằng ∞. Khoanh tròn đỉnh A.
– Tại các đỉnh kề với A, gồm B, C, D, ta có:
⦁ \({n_B}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AB}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}3\).Vì \(3{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của B thành 3.
⦁ \({n_C}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AC}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}6\).Vì \({\rm{6 }} < {\rm{ }}\infty \) nên ta đổi nhãn của C thành 6.
⦁ \({n_D}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AD}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}5\).Vì \({\rm{5 }} < {\rm{ }}\infty \) nên ta đổi nhãn của D thành 5.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B nên ta khoanh tròn đỉnh B (đỉnh gần đỉnh A nhất, chỉ tính các đỉnh khác đỉnh A).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh B gồm C, E, ta có:
⦁ \({n_C}\; = {\rm{ }}{n_B}\; + {\rm{ }}{w_{BC}}\; = {\rm{ }}3{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}5\).Vì \(5{\rm{ }} < {\rm{ }}6\) (6 là nhãn hiện tại của C) nên ta đổi nhãn của C thành 5.
⦁ \({n_E}\; = {\rm{ }}{n_B}\; + {\rm{ }}{w_{BE}}\; = {\rm{ }}3{\rm{ }} + {\rm{ }}10{\rm{ }} = {\rm{ }}13\) .Vì \(13{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của E thành 13.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là C, D (đều có nhãn là 5) nên ta tùy ý khoanh tròn đỉnh C (đỉnh gần đỉnh A thứ hai).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh C gồm E, D, F, I, ta có:
⦁ \({n_E}\; = {\rm{ }}{n_C}\; + {\rm{ }}{w_{CE}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}10\).Vì \(10{\rm{ }} < {\rm{ }}13\) (13 là nhãn hiện tại của E) nên ta đổi nhãn của E thành 10.
⦁ \({n_D}\; = {\rm{ }}{n_C}\; + {\rm{ }}{w_{CD}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}8\) .Vì \(8{\rm{ }} > {\rm{ }}5\) (5 là nhãn hiện tại của D) nên ta giữ nguyên nhãn của D là 5.
⦁ \({n_F}\; = {\rm{ }}{n_C}\; + {\rm{ }}{w_{CF}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}11\).Vì \(11{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của F thành 11.
⦁ \({n_I}\; = {\rm{ }}{n_C}\; + {\rm{ }}{w_{CI}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}8{\rm{ }} = {\rm{ }}13\).Vì \(13{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của I thành 13.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là D nên ta khoanh tròn đỉnh D (đỉnh gần đỉnh A thứ ba).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh D chỉ có đỉnh F, ta có:
\({n_F}\; = {\rm{ }}{n_D}\; + {\rm{ }}{w_{DF}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}7{\rm{ }} = {\rm{ }}12.\)
Vì \(12{\rm{ }} > {\rm{ }}11\) (11 là nhãn hiện tại của F) nên ta giữ nguyên nhãn của F là 11.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là E nên ta khoanh tròn đỉnh E (đỉnh gần đỉnh A thứ tư).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh E chỉ có đỉnh I, ta có:
\({n_I}\; = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EI}}\; = {\rm{ }}10{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}12.\)
Vì \(12{\rm{ }} < {\rm{ }}13\) (13 là nhãn hiện tại của I) nên ta đổi nhãn của I thành 12.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là F nên ta khoanh tròn đỉnh F (đỉnh gần A thứ năm).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh F chỉ còn đỉnh I, ta có:
\({n_I}\; = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FI}}\; = {\rm{ }}11{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}15.\)
Vì \(15{\rm{ }} > {\rm{ }}12\) (12 là nhãn hiện tại của I) nên ta giữ nguyên nhãn của I là 12.
Lúc này, ta thấy chỉ còn đỉnh I chưa được khoanh tròn nên ta khoanh tròn đỉnh I (đỉnh gần A thứ sáu).
– Nhìn ngược lại các bước trên, ta thấy:
\(\begin{array}{l}{n_I}\; = {\rm{ }}12{\rm{ }} = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EI}} = {\rm{ }}{n_C}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{EI}}\\ = {\rm{ }}{n_B}\; + {\rm{ }}{w_{BC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{EI}}\\ = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AB}}\; + {\rm{ }}{w_{BC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{EI}}\\ = {\rm{ }}{w_{AB}}\; + {\rm{ }}{w_{BC}}\; + {\rm{ }}{w_{CE}}\; + {\rm{ }}{w_{EI}} = {\rm{ }}{l_{ABCEI}}.\end{array}\)
Vậy ABCEI là đường đi ngắn nhất từ A đến I, với độ dài bằng 12.
Trong đồ thị có trọng số ở Hình 15, mỗi cạnh biểu diễn một tuyến xe buýt giữa hai bến trong các bến xe A, B, C, D, E và F, trọng số của mỗi cạnh biểu diễn thời gian tính bằng giờ của tuyến xe buýt tương ứng. Một người cần ít nhất bao nhiêu thời gian để di chuyển từ bến A đến bến C bằng xe buýt của các tuyến trên? Biết rằng thời gian tại bến để chuyển tiếp từ tuyến này qua tuyến kia là không đáng kể.

Phương pháp giải:
Đường đi có độ dài ngắn nhất trong các đường đi từ đỉnh A đến đỉnh C gọi là đường đi ngắn nhất từ A đến C.
Lời giải chi tiết:
Ta tìm khoảng thời gian ít nhất để di chuyển từ bến A đến bến C bằng xe buýt của các tuyến trên bằng cách sử dụng thuật toán Dijkstra như sau:

– Gán nhãn cho A bằng 0 (tức là, \({n_A}\; = {\rm{ }}0\)), các đỉnh khác bằng \(\infty \). Khoanh tròn đỉnh A.
– Tại các đỉnh kề với đỉnh A, gồm E, F, B, ta có:
⦁ \({n_E}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AE}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}0,8{\rm{ }} = {\rm{ }}0,8\).Vì \(0,8{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của E thành 0,8.
⦁ \({n_F}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AF}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}2,5{\rm{ }} = {\rm{ }}2,5\).Vì \(2,5{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của F thành 2,5.
\({n_B}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AB}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}2\).Vì \(2{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của B thành 2.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là E nên ta khoanh tròn đỉnh E (đỉnh gần đỉnh A nhất, chỉ tính các đỉnh khác đỉnh A).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh E gồm D, F, ta có:
⦁ \({n_D}\; = {\rm{ }}{n_E}\; + {\rm{ }}{w_{DE}}\; = {\rm{ }}0,8{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}3,8\).Vì \(3,8{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của D thành 3,8.
⦁ \({n_F}\; = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EF}}\; = {\rm{ }}0,8{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}1,8\).Vì \(1,8{\rm{ }} < {\rm{ }}2,5\) (2,5 là nhãn hiện tại của F) nên ta đổi nhãn của F thành 1,8.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là F nên ta khoanh tròn đỉnh F (đỉnh gần A thứ hai).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh F gồm B, C, D, ta có:
⦁ \({n_B}\; = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FB}}\; = {\rm{ }}1,8{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}3,8\).Vì \(3,8{\rm{ }} > {\rm{ }}2\) (2 là nhãn hiện tại của B) nên ta giữ nguyên nhãn của B là 2.
⦁ \({n_C}\; = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FC}}\; = {\rm{ }}1,8{\rm{ }} + {\rm{ }}2,2{\rm{ }} = {\rm{ }}4\).Vì \(4{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của C thành 4.
⦁ \({n_D}\; = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FD}}\; = {\rm{ }}1,8{\rm{ }} + {\rm{ }}1,2{\rm{ }} = {\rm{ }}3\).Vì \(3{\rm{ }} < {\rm{ }}3,8\) (3,8 là nhãn hiện tại của D) nên ta đổi nhãn của D thành 3.
Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B. Nhưng do trong các đỉnh chưa được khoanh tròn còn lại, ta thấy không có đỉnh nào kề với đỉnh B nên ta chọn lại đỉnh có nhãn bé nhất (ngoại trừ đỉnh B) là đỉnh D (đỉnh gần A thứ ba).
– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh D chỉ còn đỉnh C, ta có:
\({n_C}\; = {\rm{ }}{n_D}\; + {\rm{ }}{w_{DC}}\; = {\rm{ }}3{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}6\).Vì \(6{\rm{ }} > {\rm{ }}4\) (4 là nhãn hiện tại của C) nên ta giữ nguyên nhãn của C là 4.
Lúc này, ngoại trừ đỉnh B, ta thấy chỉ còn đỉnh C chưa được khoanh tròn nên ta khoanh tròn đỉnh C (đỉnh gần A thứ tư).
– Nhìn ngược lại các bước trên, ta thấy:
\(\begin{array}{*{20}{l}}{{n_C}\; = {\rm{ }}4{\rm{ }} = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EF}}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AE}}\; + {\rm{ }}{w_{EF}}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{w_{AE}}\; + {\rm{ }}{w_{EF}}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{l_{AEFC}}.}\end{array}\)
Vậy người đó cần ít nhất 4 giờ để di chuyển từ bến A đến bến C bằng xe buýt của các tuyến trên.
Mục 2 trong Chuyên đề học tập Toán 11 - Chân trời sáng tạo thường tập trung vào một chủ đề cụ thể, đòi hỏi học sinh phải nắm vững lý thuyết và áp dụng linh hoạt vào giải bài tập. Việc giải các bài tập trang 61, 62, 63, 64, 65 không chỉ giúp củng cố kiến thức mà còn rèn luyện tư duy logic và kỹ năng giải quyết vấn đề.
Để hiểu rõ hơn về Mục 2, chúng ta cần xác định nội dung chính mà nó đề cập đến. Thông thường, đây có thể là một trong các chủ đề sau:
Dưới đây là hướng dẫn giải chi tiết một số bài tập tiêu biểu trong Mục 2, trang 61, 62, 63, 64, 65:
(Giả sử đây là một bài tập về hàm số lượng giác)
Đề bài: Tìm tập xác định của hàm số y = √(2 - cosx).
Lời giải:
(Giả sử đây là một bài tập về phương trình lượng giác)
Đề bài: Giải phương trình sin2x = 1.
Lời giải:
Tusach.vn tự hào là một trong những trang web cung cấp lời giải bài tập Toán 11 Chân trời sáng tạo nhanh chóng, chính xác và dễ hiểu nhất. Chúng tôi cam kết đồng hành cùng bạn trên con đường chinh phục môn Toán. Hãy truy cập Tusach.vn để khám phá thêm nhiều tài liệu học tập hữu ích khác!
| Chủ đề | Trang | Liên kết |
|---|---|---|
| Hàm số lượng giác | 61-63 | Tusach.vn/toan-11/ham-so-luong-giac |
| Phương trình lượng giác | 63-65 | Tusach.vn/toan-11/phuong-trinh-luong-giac |
Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!
Sách kỹ năng sống, Sách nuôi dạy con, Sách tiểu sử hồi ký, Sách nữ công gia chánh, Sách học tiếng hàn, Sách thiếu nhi, tài liệu học tập