1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 5 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 5 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Tusach.vn xin giới thiệu lời giải chi tiết bài 5 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này cung cấp đáp án, cách giải và giải thích rõ ràng từng bước để giúp học sinh hiểu bài và làm bài tập hiệu quả.

Chúng tôi luôn cố gắng cung cấp nội dung chính xác và dễ hiểu nhất, giúp các em học sinh nắm vững kiến thức Toán 11.

Tìm đường đi ngắn nhất từ đỉnh A đến từng đỉnh (khác A) trong đồ thị có trọng số ở Hình 19.

Đề bài

Tìm đường đi ngắn nhất từ đỉnh A đến từng đỉnh (khác A) trong đồ thị có trọng số ở Hình 19.

Giải bài 5 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo 2

Thuật toán tìm đường đi ngắn nhất từ đỉnh A đến đỉnh T

Mở đầu: Gán nhãn của A bằng 0, các đỉnh khác bằng \(\infty \). Khoanh tròn đỉnh A.

Các bước lặp

Trong mỗi bước lặp thực hiện các thao tác sau đây:

- Gọi U là đỉnh vừa được khoanh tròn ở bước trước. Trong các đỉnh chưa khoanh tròn, xét lần lượt từng đỉnh V kề với đỉnh U, tính \({n_U}\; + {\rm{ }}{w_{UV}}\), rồi so sánh số này với nhãn hiện tại \({n_V}\;\) của V. Nếu số đó nhỏ hơn thì đổi nhãn \({n_V}\;\) bằng số đó.

- So sánh nhãn của tất cả các đỉnh chưa khoanh tròn. Đỉnh nào có nhãn nhỏ nhất thì khoanh tròn đỉnh đó (nếu có nhiều đỉnh hư vậy thì khoanh một đỉnh tùy ý trong số đó).

- Nếu đỉnh T chưa được khoanh tròn thì thực hiện bước lặp tiếp theo, trái lại thì kết thức các bước lặp.

Kết luận: Dò lại các bước lặp để viết được nhãn \({n_T}\) của T dưới dạng tổng độ dài các cạnh. Từ đó nhận được đường đi ngắn nhất từ A đến T cùng với độ dài của nó.

Lời giải chi tiết

Giải bài 5 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo 3

– Gán nhãn cho A bằng 0 (tức là, \({n_A}\; = {\rm{ }}0\)), các đỉnh khác bằng \(\infty \). Khoanh tròn đỉnh A.

– Tại các đỉnh kề với A, gồm E, B, D, F, ta có:

⦁ \({n_E}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AE}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}3\).Vì \(3{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của E thành 3.

⦁ \({n_B}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AB}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}7{\rm{ }} = {\rm{ }}7\).Vì \(7{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của B thành 7.

⦁ \({n_D}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AD}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}6{\rm{ }} = {\rm{ }}6\).Vì \(6{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của D thành 6.

⦁ \({n_F}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AF}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}12\).Vì \(12{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của F thành 12.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là E nên ta khoanh tròn đỉnh E (đỉnh gần A nhất, chỉ tính các đỉnh khác A).

Ta có \({n_E}\; = {\rm{ }}3{\rm{ }} = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AE}}\; = {\rm{ }}{w_{AE}}\; = {\rm{ }}{l_{AE}}.\)

Vì vậy AE là đường đi ngắn nhất từ A đến E, với độ dài bằng 3.

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh E chỉ có B, ta có:

\({n_B}\; = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EB}}\; = {\rm{ }}3{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}5\).Vì \(5{\rm{ }} < {\rm{ }}7\) (7 là nhãn hiện tại của B) nên ta đổi nhãn của B thành 5.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B nên ta khoanh tròn đỉnh B (đỉnh gần A thứ hai).

Ta có \({n_B}\; = {\rm{ }}5{\rm{ }} = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EB}}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AE}}\; + {\rm{ }}{w_{EB}}\; = {\rm{ }}{w_{AE}}\; + {\rm{ }}{w_{EB}}\; = {\rm{ }}{l_{AEB}}.\)

Vì vậy AEB là đường đi ngắn nhất từ A đến B, với độ dài bằng 5.

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh B gồm F, C, ta có:

\({n_F}\; = {\rm{ }}{n_B}\; + {\rm{ }}{w_{BF}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}8{\rm{ }} = {\rm{ }}13\).Vì \(13{\rm{ }} > {\rm{ }}12\) (12 là nhãn hiện tại của F) nên ta giữ nguyên nhãn của F là 12.

\({n_C}\; = {\rm{ }}{n_B}\; + {\rm{ }}{w_{BC}}\; = {\rm{ }}5{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}9.\)Vì \(9{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của C thành 9.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là D nên ta khoanh tròn đỉnh D (đỉnh gần A thứ ba).

Ta có \({n_D}\; = {\rm{ }}6{\rm{ }} = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AD}}\; = {\rm{ }}{w_{AD}}\; = {\rm{ }}{l_{AD}}.\)

Vì vậy AD là đường đi ngắn nhất từ đỉnh A đến D, với độ dài bằng 6.

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh D gồm đỉnh F, C, ta có:

⦁ \({n_F}\; = {\rm{ }}{n_D}\; + {\rm{ }}{w_{DF}}\; = {\rm{ }}6{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}11.\)Vì \(11{\rm{ }} < {\rm{ }}12\) (12 là nhãn hiện tại của F) nên ta đổi nhãn của F thành 11.

⦁ \({n_C}\; = {\rm{ }}{n_D}\; + {\rm{ }}{w_{DC}}\; = {\rm{ }}6{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}10.\) Vì \(10{\rm{ }} > {\rm{ }}9\) (9 là nhãn hiện tại của C) nên ta giữ nguyên nhãn của C là 9.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là đỉnh C nên ta khoanh tròn đỉnh C (đỉnh gần A thứ tư).

Ta có \({n_C}\; = {\rm{ }}9{\rm{ }} = {\rm{ }}{n_B}\; + {\rm{ }}{w_{BC}}\)

\(\begin{array}{*{20}{l}}{ = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EB}}\; + {\rm{ }}{w_{BC}}}\\{ = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AE}}\; + {\rm{ }}{w_{EB}}\; + {\rm{ }}{w_{BC}}}\\{ = {\rm{ }}{w_{AE}}\; + {\rm{ }}{w_{EB}}\; + {\rm{ }}{w_{BC}}}\\{ = {\rm{ }}{l_{AEBC}}.}\end{array}\)

Vì vậy AEBC là đường đi ngắn nhất từ A đến C, với độ dài bằng 9.

– Lúc này, ta thấy chỉ còn đỉnh F chưa được khoanh tròn nên ta khoanh tròn đỉnh F (đỉnh gần A thứ năm).

Ta có \({n_F}\; = {\rm{ }}11{\rm{ }} = {\rm{ }}{n_D}\; + {\rm{ }}{w_{DF}}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AD}}\; + {\rm{ }}{w_{DF}}\; = {\rm{ }}{w_{AD}}\; + {\rm{ }}{w_{DF}}\; = {\rm{ }}{l_{ADF}}.\)

Vì vậy ADF là đường đi ngắn nhất từ A đến F, với độ dài bằng 11.

Vậy đường đi ngắn nhất từ đỉnh A đến các đỉnh B, C, D, E, F lần lượt là AEB, AEBC, AD, AE, ADF.

Giải bài 5 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan

Bài 5 trang 66 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung bài tập

Bài 5 trang 66 thường bao gồm các dạng bài tập sau:

  • Tính đạo hàm của hàm số: Yêu cầu tính đạo hàm của các hàm số đơn thức, đa thức, hàm hợp, hàm lượng giác,...
  • Tìm cực trị của hàm số: Sử dụng đạo hàm để tìm các điểm cực trị (cực đại, cực tiểu) của hàm số.
  • Khảo sát hàm số: Xác định khoảng đồng biến, nghịch biến, cực trị, điểm uốn và vẽ đồ thị hàm số.
  • Ứng dụng đạo hàm vào các bài toán thực tế: Giải các bài toán liên quan đến tối ưu hóa, tìm giá trị lớn nhất, giá trị nhỏ nhất,...

Lời giải chi tiết bài 5 trang 66

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 5 trang 66, Tusach.vn xin trình bày lời giải chi tiết như sau:

Câu a: (Ví dụ minh họa - cần thay thế bằng nội dung bài tập thực tế)

Cho hàm số y = x3 - 3x2 + 2. Tìm cực trị của hàm số.

  1. Tính đạo hàm: y' = 3x2 - 6x
  2. Tìm điểm cực trị: Giải phương trình y' = 0, ta được x = 0 hoặc x = 2.
  3. Xác định loại cực trị:
    • Với x < 0, y' > 0, hàm số đồng biến.
    • Với 0 < x < 2, y' < 0, hàm số nghịch biến.
    • Với x > 2, y' > 0, hàm số đồng biến.
    Vậy hàm số đạt cực đại tại x = 0, ymax = 2 và đạt cực tiểu tại x = 2, ymin = -2.

Câu b: (Ví dụ minh họa - cần thay thế bằng nội dung bài tập thực tế)

Tìm khoảng đồng biến, nghịch biến của hàm số y = x2 - 4x + 3.

Lời giải:

Đạo hàm của hàm số là y' = 2x - 4.

  • Hàm số đồng biến khi y' > 0, tức là 2x - 4 > 0 ⇔ x > 2.
  • Hàm số nghịch biến khi y' < 0, tức là 2x - 4 < 0 ⇔ x < 2.

Mẹo giải bài tập đạo hàm

Để giải tốt các bài tập về đạo hàm, các em học sinh cần:

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các quy tắc tính đạo hàm một cách linh hoạt.
  • Kiểm tra lại kết quả sau khi giải bài tập.

Tusach.vn - Đồng hành cùng học sinh

Tusach.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục kiến thức Toán học. Chúng tôi cung cấp đầy đủ các tài liệu học tập, bài giải chi tiết và các mẹo giải bài tập hiệu quả. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất!

Công thứcĐạo hàm
y = c (hằng số)y' = 0
y = xny' = nxn-1

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN