1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Tusach.vn xin giới thiệu lời giải chi tiết bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.

Chúng tôi luôn cố gắng cung cấp nội dung chất lượng, dễ hiểu và cập nhật nhanh chóng nhất.

Cho đồ thị có trọng số như Hình 4. Đường đi ngắn nhất từ A đến C là

Đề bài

Cho đồ thị có trọng số như Hình 4. Đường đi ngắn nhất từ A đến C là

Giải bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

A. AEC.

B. AEFC.

C. AC.

D. AFC.

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo 2

Thuật toán tìm đường đi ngắn nhất từ đỉnh A đến đỉnh T

Mở đầu: Gán nhãn của A bằng 0, các đỉnh khác bằng\(\infty \). Khoanh tròn đỉnh A.

Các bước lặp

Trong mỗi bước lặp thực hiện các thao tác sau đây:

- Gọi U là đỉnh vừa được khoanh tròn ở bước trước. Trong các đỉnh chưa khoanh tròn, xét lần lượt từng đỉnh V kề với đỉnh U, tính \({n_U}\; + {\rm{ }}{w_{UV}}\), rồi so sánh số này với nhãn hiện tại \({n_V}\;\) của V. Nếu số đó nhỏ hơn thì đổi nhãn \({n_V}\;\) bằng số đó.

- So sánh nhãn của tất cả các đỉnh chưa khoanh tròn. Đỉnh nào có nhãn nhỏ nhất thì khoanh tròn đỉnh đó (nếu có nhiều đỉnh hư vậy thì khoanh một đỉnh tùy ý trong số đó).

- Nếu đỉnh T chưa được khoanh tròn thì thực hiện bước lặp tiếp theo, trái lại thì kết thức các bước lặp.

Kết luận: Dò lại các bước lặp để viết được nhãn \({n_T}\) của T dưới dạng tổng độ dài các cạnh. Từ đó nhận được đường đi ngắn nhất từ A đến T cùng với độ dài của nó.

Lời giải chi tiết

Đáp án đúng là: B

Giải bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo 3

– Gán nhãn cho A bằng 0 (tức là, nA = 0), các đỉnh khác bằng ∞. Khoanh tròn đỉnh A.

– Tại các đỉnh kề với A, gồm E, F, B, ta có:

⦁ \({n_E}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AE}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}2\).Vì \(2{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của E thành 2.

⦁ \({n_F}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AF}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}4{\rm{ }} = {\rm{ }}4\).Vì \(4{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của F thành 4.

⦁ \({n_B}\; = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AB}}\; = {\rm{ }}0{\rm{ }} + {\rm{ }}2,5{\rm{ }} = {\rm{ }}2,5\).Vì \(2,5{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của B thành 2,5.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là E nên ta khoanh tròn đỉnh E (đỉnh gần A nhất, chỉ tính các đỉnh khác A).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh E gồm D, C, F, ta có:

⦁ \({n_D}\; = {\rm{ }}{n_E}\; + {\rm{ }}{w_{ED}}\; = {\rm{ }}2{\rm{ }} + {\rm{ }}3{\rm{ }} = {\rm{ }}5\).Vì \(5{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của D thành 5.

⦁ \({n_C}\; = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EC}}\; = {\rm{ }}2{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}7\).Vì \(7{\rm{ }} < {\rm{ }}\infty \) nên ta đổi nhãn của C thành 7.

⦁ \({n_F}\; = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EF}}\; = {\rm{ }}2{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}3\).Vì \(3{\rm{ }} < {\rm{ }}4\) (4 là nhãn hiện tại của F) nên ta đổi nhãn của F thành 3.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là B nên ta khoanh tròn đỉnh B (đỉnh gần A thứ hai).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh B chỉ có F, ta có:

\({n_F}\; = {\rm{ }}{n_B}\; + {\rm{ }}{w_{BF}}\; = {\rm{ }}2,5{\rm{ }} + {\rm{ }}1,5{\rm{ }} = {\rm{ }}4\).Vì \(4{\rm{ }} > {\rm{ }}3\) (3 là nhãn hiện tại của F) nên ta giữ nguyên nhãn của F là 3.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là F nên ta khoanh tròn đỉnh F (đỉnh gần A thứ ba).

– Trong các đỉnh chưa được khoanh tròn, đỉnh kề với đỉnh F chỉ có C, ta có:

\({n_C}\; = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FC}}\; = {\rm{ }}3{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}5\).Vì \(5{\rm{ }} < {\rm{ }}7\) (7 là nhãn hiện tại của C) nên ta đổi nhãn của C thành 5.

Trong các đỉnh chưa được khoanh tròn, đỉnh có nhãn bé nhất là C, D (đều có nhãn là 5), nhưng do ta cần tìm đường đi ngắn nhất từ A đến C nên ta ưu tiên khoanh tròn đỉnh C (đỉnh gần A thứ tư).

– Nhìn lại các bước trên, ta thấy:

\(\begin{array}{*{20}{l}}{{n_C}\; = {\rm{ }}5{\rm{ }} = {\rm{ }}{n_F}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{n_E}\; + {\rm{ }}{w_{EF}}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{n_A}\; + {\rm{ }}{w_{AE}}\; + {\rm{ }}{w_{EF}}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{w_{AE}}\; + {\rm{ }}{w_{EF}}\; + {\rm{ }}{w_{FC}}}\\{ = {\rm{ }}{l_{AEFC}}.}\end{array}\)

Vậy AEFC là đường đi ngắn nhất từ A đến C, với độ dài bằng 5.

Do đó ta chọn phương án B.

Giải bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan

Bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng các kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm như đạo hàm của hàm số, quy tắc tính đạo hàm, và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài 5 trang 67

Để giải quyết bài 5 trang 67 một cách hiệu quả, chúng ta cần phân tích kỹ đề bài và xác định rõ yêu cầu. Thông thường, bài tập sẽ yêu cầu:

  • Tính đạo hàm của hàm số đã cho.
  • Tìm các điểm cực trị của hàm số.
  • Xác định khoảng đồng biến, nghịch biến của hàm số.
  • Vẽ đồ thị hàm số (nếu yêu cầu).

Lời giải chi tiết bài 5 trang 67

Dưới đây là lời giải chi tiết cho bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Chúng tôi sẽ trình bày từng bước giải một cách rõ ràng, dễ hiểu, kèm theo các giải thích chi tiết để giúp bạn nắm vững kiến thức.

Ví dụ minh họa (Giả sử bài 5 là hàm số f(x) = x^3 - 3x^2 + 2)

  1. Bước 1: Tính đạo hàm f'(x)
  2. f'(x) = 3x^2 - 6x

  3. Bước 2: Tìm điểm cực trị
  4. Giải phương trình f'(x) = 0: 3x^2 - 6x = 0 => x = 0 hoặc x = 2

    Vậy hàm số có hai điểm cực trị là x = 0 và x = 2.

  5. Bước 3: Xác định khoảng đồng biến, nghịch biến
  6. Xét dấu f'(x):

    • Khi x < 0: f'(x) > 0 => Hàm số đồng biến trên khoảng (-∞, 0)
    • Khi 0 < x < 2: f'(x) < 0 => Hàm số nghịch biến trên khoảng (0, 2)
    • Khi x > 2: f'(x) > 0 => Hàm số đồng biến trên khoảng (2, +∞)

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, bạn nên:

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tài liệu tham khảo hữu ích

Ngoài sách giáo khoa và sách bài tập, bạn có thể tham khảo thêm các tài liệu sau:

  • Các trang web học Toán trực tuyến như Tusach.vn, Vietjack, Loigiaihay.
  • Các video bài giảng trên YouTube.
  • Các diễn đàn trao đổi kiến thức Toán học.

Kết luận

Hy vọng với lời giải chi tiết và các mẹo giải bài tập trên, bạn đã có thể tự tin giải quyết bài 5 trang 67 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Chúc bạn học tập tốt!

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN