1. Trang Chủ
  2. Tài Liệu Học Tập
  3. Giải bài 5 trang 59 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 5 trang 59 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Giải bài 5 trang 59 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Tusach.vn xin giới thiệu lời giải chi tiết bài 5 trang 59 Chuyên đề học tập Toán 11 Chân trời sáng tạo. Bài viết này cung cấp đáp án chính xác, phương pháp giải rõ ràng, giúp học sinh hiểu sâu kiến thức và tự tin làm bài tập.

Chúng tôi luôn cập nhật nhanh chóng và chính xác các bài giải Toán 11 Chân trời sáng tạo, đảm bảo hỗ trợ tối đa cho quá trình học tập của bạn.

Có bốn khu phố A, B, C và D được nối với nhau bằng những cây cầu như Hình 27.

Đề bài

Có bốn khu phố A, B, C và D được nối với nhau bằng những cây cầu như Hình 27. Có hay không cách đi qua tất cả các cây cầu, mỗi cây cầu chỉ qua một lần, rồi quay trở lại nơi xuất phát? Nếu có, hãy chỉ ra một cách đi như vậy.

Giải bài 5 trang 59 Chuyên đề học tập Toán 11 Chân trời sáng tạo 1

Phương pháp giải - Xem chi tiếtGiải bài 5 trang 59 Chuyên đề học tập Toán 11 Chân trời sáng tạo 2

Quan sát hình vẽ, dựa vào kiến thức:

Trong đồ thị, một đường đi được gọi là đường đi Euler nếu đường đi đó đi qua tất cả các cạnh của đồ thị, mỗi cạnh đúng 1 lần.

Nếu chu trình là đường đi Euler thì chu trình đo được gọi là chu trình Euler.

Lời giải chi tiết

Biểu thị mỗi khu phố bằng một đỉnh, mỗi cây cầu bằng một cạnh nối hai đỉnh, ta được đồ thị như hình vẽ.

Giải bài 5 trang 59 Chuyên đề học tập Toán 11 Chân trời sáng tạo 3

Ta có d(A) = d(B) = d(C) = d(D) = 4.

Suy ra tất cả các đỉnh của đồ thị trên đều có bậc chẵn.

Do đó đồ thị trên có chu trình Euler.

Vậy nói cách khác, có cách đi qua tất cả các cây cầu, mỗi cây cầu chỉ qua một lần, rồi quay trở lại nơi xuất phát.

Chẳng hạn, bắt đầu từ đỉnh A, ta có thể đi theo chu trình Euler: AabADcdDBCA

Giải bài 5 trang 59 Chuyên đề học tập Toán 11 Chân trời sáng tạo: Tổng quan và Phương pháp

Bài 5 trang 59 Chuyên đề học tập Toán 11 Chân trời sáng tạo thuộc chương trình học Toán 11, tập trung vào việc vận dụng kiến thức về đạo hàm để giải quyết các bài toán thực tế. Bài tập này thường yêu cầu học sinh phải hiểu rõ các khái niệm về đạo hàm, quy tắc tính đạo hàm và ứng dụng của đạo hàm trong việc tìm cực trị, khoảng đơn điệu của hàm số.

Nội dung chi tiết bài 5 trang 59

Bài 5 thường bao gồm các dạng bài tập sau:

  • Dạng 1: Tính đạo hàm của hàm số.
  • Dạng 2: Tìm cực trị của hàm số.
  • Dạng 3: Khảo sát sự biến thiên của hàm số.
  • Dạng 4: Ứng dụng đạo hàm để giải các bài toán tối ưu.

Lời giải chi tiết bài 5 trang 59

Để giúp các em học sinh hiểu rõ hơn về cách giải bài 5 trang 59, Tusach.vn xin trình bày lời giải chi tiết như sau:

Ví dụ minh họa (Giả định bài tập cụ thể):

Bài tập: Cho hàm số y = x3 - 3x2 + 2. Tìm cực đại, cực tiểu của hàm số.

Lời giải:

  1. Bước 1: Tính đạo hàm bậc nhất y' = 3x2 - 6x.
  2. Bước 2: Tìm các điểm cực trị bằng cách giải phương trình y' = 0. Ta có 3x2 - 6x = 0 => x = 0 hoặc x = 2.
  3. Bước 3: Tính đạo hàm bậc hai y'' = 6x - 6.
  4. Bước 4: Xét dấu đạo hàm bậc hai tại các điểm cực trị:
    • Tại x = 0, y'' = -6 < 0 => Hàm số đạt cực đại tại x = 0. Giá trị cực đại là y(0) = 2.
    • Tại x = 2, y'' = 6 > 0 => Hàm số đạt cực tiểu tại x = 2. Giá trị cực tiểu là y(2) = -2.

Kết luận: Hàm số đạt cực đại tại x = 0 với giá trị là 2 và đạt cực tiểu tại x = 2 với giá trị là -2.

Mẹo giải bài tập đạo hàm hiệu quả

Để giải các bài tập về đạo hàm một cách hiệu quả, các em học sinh cần:

  • Nắm vững các công thức tính đạo hàm cơ bản.
  • Luyện tập thường xuyên để làm quen với các dạng bài tập khác nhau.
  • Sử dụng các công cụ hỗ trợ như máy tính bỏ túi hoặc phần mềm giải toán.
  • Kiểm tra lại kết quả sau khi giải xong.

Tusach.vn – Đồng hành cùng học sinh

Tusach.vn luôn đồng hành cùng các em học sinh trên con đường chinh phục kiến thức Toán học. Chúng tôi cung cấp đầy đủ các bài giải, đáp án và lời giải chi tiết cho tất cả các bài tập trong sách giáo khoa Toán 11 Chân trời sáng tạo. Hãy truy cập Tusach.vn để được hỗ trợ tốt nhất!

Dạng bàiPhương pháp giải
Tính đạo hàmSử dụng quy tắc tính đạo hàm của các hàm số cơ bản.
Tìm cực trịGiải phương trình đạo hàm bằng 0 và xét dấu đạo hàm bậc hai.

Tải sách PDF tại TuSach.vn mang đến trải nghiệm tiện lợi và nhanh chóng cho người yêu sách. Với kho sách đa dạng từ sách văn học, sách kinh tế, đến sách học ngoại ngữ, bạn có thể dễ dàng tìm và tải sách miễn phí với chất lượng cao. TuSach.vn cung cấp định dạng sách PDF rõ nét, tương thích nhiều thiết bị, giúp bạn tiếp cận tri thức mọi lúc, mọi nơi. Hãy khám phá kho sách phong phú ngay hôm nay!

VỀ TUSACH.VN